您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 轴承振动特征分析含轴承故障特征频率的特点及计算
滚动轴承故障机器振动特征分析(2)滚动轴承故障滚动轴承是机器中最精密的部件,公差是其余部件的十分之一。由于各种原因,只有10%到20%的轴承能达到它们的设计寿命滚动轴承类型深槽球轴承针轴承角接触球轴承圆柱滚子轴承球面滚子轴承圆锥滚子轴承滚动轴承为什么会过早损坏?主要因素之一是过大的动载荷即振动。理论计算滚珠轴承寿命公式,表明为什么作用在轴承上的动载减少轴承的寿命:转速愈高,预期的寿命愈短。理论的轴承寿命随轴承承受的的负载的三次方变化。如果设计者只考虑轴承的静载和如皮带拉伸等其他部件静载,则轴承的理论计算寿命会大打折扣。缩短滚动轴承寿命的因素例:重量为2000磅(908公斤)的转子,转速为6000转/分,在直径为3英尺(半径为18英寸=457.2毫米)处的转子上存在一个1盎司(28.35克)的不平衡质量。此不平衡质量产生的离心力计算:其它缩短滚动轴承寿命的因素转子不只承受不平衡,还承受不对中、松动、气蚀或其它故障引起的动载荷,轴承的实际寿命可能还要短。其它因素:润滑不当,错误润滑剂,灰尘和其它污染物污染,储存不当,潮气,运输或使用时嗑碰、刮伤,错用轴承型号,轴承安装不当等。最重要的对策是监测滚动轴承的状态,早期发现轴承故障,跟踪其发展趋势,并知道何时需更换轴承;正确地采集轴承振动特征信号;分析其振动特征信号,故障诊断;利用高频包络解调信号处理技术,更有效地监测出轴承故障。选择合适的监测参数如振动速度、冲击脉冲、解调谱等。轴承故障原因及其解决•过负荷–引起过早疲劳,(包括过紧配合,布氏硬度凹痕和预负荷)–减少负荷或重新设计•过热–征兆是滚道,球和保持架变色,金色变为蓝色–温度超过400F(204℃)使滚道和滚动体材料退火–硬度降低导致轴承承重降低和早期失效–严重情况下引起变形,另外温升高会降低和破坏润滑性能轴承故障原因及其解决•布氏硬度凹痕–当负荷超过滚道的弹性极限时产生–滚道上的凹痕增加振动(噪声)–任何静态过负荷和严重冲击产生布氏凹痕•伪布式凹痕–在每个滚珠位置产生的椭圆形磨损凹痕,光滑,有明显边界,周围有磨削–表明严重的外部振动–隔振和使用抗摩添加剂轴承故障原因及其解决•正常疲劳失效–疲劳失效指滚道和滚动体上发生龟裂,并随之产生材料碎片剥落–这种疲劳为逐渐发生,一旦开始则迅速扩展,并伴随明显的振动增加–更换轴承,和设计有更长疲劳寿命的轴承轴承故障原因及其解决•反向载荷–角接触轴承的设计只接受一个方向的轴向载荷–当方向相反时,外圈的椭圆接触区域被削平…–结果是应力增加,温度升高,并产生振动增大和轴承早期失效轴承故障原因及其解决•污染–污染是轴承失效的主要原因之一–污染的征兆是在滚道和滚动体表面有点痕,导致振动加大和磨损–清洁环境,工具,规范操作。新轴承的储运。•润滑油失效–滚道和滚子的变色(蓝、棕)是润滑失效的征兆,随之产生滚道、滚子和保持架磨损,导致过热和严重故障。–滚动轴承的正常运行取决于各部件间存在良好油膜失效常常由润滑不足和过热引起轴承故障原因及其解决•腐蚀–其征兆是在滚道、滚子、保持架或其他位置出现红棕色区域–原因是轴承接触腐蚀性流体和气体–严重情况下,腐蚀引起轴承早期疲劳失效–除掉腐蚀流体,尽可能使用整体密封轴承轴承故障原因及其解决•不对中–征兆是滚珠在滚道上产生的磨痕与滚道边缘不平行–如果不对中超过0.001in/in,会产生轴承和轴承座异常温升,和保持架球磨损•配合松动–配合松动导致配合部件的相对运动,如果这个相对运动轻微但不间断,则产生磨损–这种磨损产生颗粒,并氧化成特殊的棕色。这导致研磨和松动加大。–如果松动增大到内圈或外圈的显著运动,安装表面(孔径,外径和侧面)将磨损和发热,引起噪声和晃动。滚动轴承故障的振动特征滚动轴承一旦产生故障,可能会产生四种类型频率的振动随机的超声频率;轴承零部件的自振频率;轴承故障特征频率;轴承故障的和频及差频。随机的超声频率振动滚动轴承初始故障时产生的振动,从滚动轴承安装在设备上直到它们刚发生故障之前,发生的频率范围从约5000Hz到60000Hz超声频率范围。包括振动尖峰能量(SpikeEneey),高频加速度(HFD),冲击脉冲(ShockPules)及其他。通常,以总量值评定轴承的状态,其频谱数据信息更丰富。滚动轴承振动尖峰能量(gSE)报警值。轴承零部件的自振频率安装在机器上的滚动轴承自振频率范围约为500到2000Hz之间。自振频率与转速无关,无论轴的转速高低它都处在一个相同的频率位置。轴承故障特征频率滚动轴承故障特征频率就是轴承故障产生的振动频率。BPFO–外圈故障特征频率BPFI–内圈故障特征频率BSF–滚动体故障特征频率FTF-保持架故障特征频率滚动轴承故障的振动特征1.轴承的故障频率与其他故障频率不同;2.轴承故障频率是转速频率的非整数倍;3.内外环故障频率的和频=“轴承滚动体通过频率”(滚动体个数×RPM)4.轴承内环故障频率往往伴有1X转速频率的边带轴承故障特征频率的特点5.轴承外环故障频率的幅值高于轴承内环故障频率的幅值;6.轴承故障一般在发展到滚动体和保持架出现故障之前首先出现的是内环或外环故障频率;7.轴承保持架故障频率(FTF)通常不是以其基频出现;8.当滚动体本身出现故障时,往往会产生不仅滚动体故障频率(BSF),还有保持架故障频率(FTF);9.轴承保持架断裂时,可能出现滚动体旋转故障频率;10.一个以上滚动体有故障时,将产生有故障的滚动体数目×滚动体故障特征频率的频率。如果5个滚珠或滚柱上有故障,往往将出现5×BSF的频率。11.轴承故障频率允许的振动幅值不能绝对限定。它不仅与具体机器、转速有关,还与轴承故障频率传递的通路有很大关系。指示轴承损坏的最明显的标志就是存在轴承故障频率的谐波频率,尤其是这些频率伴有1×转速频率或轴承其它故障频率边带,应尽快更换该轴承。轴承故障特征频率的特点12.评定的低速机器的轴承状态:评定尤其是低于100转/分转速的机器轴承状态时,推荐采集时域波形和(FFT)频谱二者。当转速很低时,滚动体滚动通过轴承内外环上缺陷时发生的脉冲没有足够能量产生清楚的,可以检测出来的FFT谱中的频率,但是在时域波形中仍然可能清楚的看出来。轴承故障特征频率的特点13.振动传感器置于尽可能靠近轴承的承载区,尤其是轴承仅支承径向负载时。14.不合适的轴承负载和安装问题若轴承负载不合适或安装不恰当,例如,安装新轴承时,如果轴承与轴承座过盈配合过紧,使轴承“咔入”轴承座中,导致轴承内部间隙发生变化,使滚动体强制被压向轴承的内外环。出现这种情况,轴承在起动时立即产生轴承外环和内环的故障频率。由于安装不当对轴承施加了过大负荷。虽然,可能尚未发生实际损坏,但是,如果检测不出这种故障问题并采取措施修正,则该轴承将在其预定寿命之前很早就损坏。15.轴承润滑不良产生的频率特征是在900到1600Hz范围内,有3或4个尖峰,尖峰之间的差频在80到130Hz。润滑良好的轴承可能也包括这些频率分量,然而,它们的幅值非常小,约为1.27mm/s或更小。当润滑不良时,幅值增大到2.54到5.08mm/s轴承故障特征频率的特点滚动轴承故障特征频率BPFO-BallPassFrequencyOuterRaceBPFI-BallPassFrequencyInnerRaceBSF-BallSpinFrequencyFTF-CageFrequencyorFundamentalTrainFrequency滚动轴承故障频率计算(1)保持架故障频率:FTF=(1/2){No[1+(d/D)Cosφ]+Ni[1-(d/D)Cosφ]}滚动体旋转故障频率:BSF=(1/2)(D/d)|No-Ni|{[1-(d/D)Cosφ]²}外环故障频率:BPFO=(1/2)n|No-Ni|[1-(d/D)Cosφ]内环故障频率:BPFI=(1/2)n|Ni-No|[1+(d/D)Cosφ]d=滚动体直径;D=滚动轴承平均直径(滚动体中心处直径);φ=径向方向接触角;n=滚动体数目;No=轴承外环角速度;Ni=轴承内环角速度(=轴转速).注:1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环和轴承内环都旋转.滚动轴承故障频率计算(2)保持架故障频率:FTF=(N/2)[1-(d/D)Cosφ]滚动体旋转故障频率:BSF=(N/2)(D/d){1-[(d/D)Cosφ]²}外环故障频率:BPFO=(N/2)n[1-(d/D)Cosφ]内环故障频率:BPFI=(N/2)n[1+(d/D)Cosφ]d=滚动体直径;D=滚动轴承平均直径(滚动体中心处直径);φ=径向方向接触角;n=滚动体数目;N=轴的转速。注:1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环固定不旋转.滚动轴承故障频率计算(3)外环故障频率:BPFOr≌0.4Nn内环故障频率:BPFIr≌0.6Nn保持架故障频率:FTFr≌0.4Nn=滚动体数目;N=轴的转速。注:1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环固定不旋转.经验公式滚动轴承故障频率计算(4)外环故障频率:BPFOe≌N(0.5n-1.2)内环故障频率:BPFIe≌N(0.5n+1.2)滚动体故障频率:BSFe≌N(0.2n-1.2/n)保持架故障频率:FTFe≌N(0.5-1.2/n)n=滚动体数目;N=轴的转速。注:1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环固定不旋转估算公式滚动轴承故障频率计算例典型的轴承故障发展过程润滑分析感官振动分析声发射检测典型的轴承故障发展过程轴承故障劣化发展不是按线性规律,而是按指数规律变化通常约百分之八十至九十的轴承寿命12341X234阶段轴承剩余寿命的10-20%阶段轴承剩余寿命的5-10%阶段轴承剩余寿命的1-5%阶段一小时至轴承剩余寿命的1%灾难性破坏累积的损伤时间轴承故障发展的四个阶段I.初始阶段1.噪声正常2.温度正常3.可以用超声,振动尖峰能量,声发射测量出来,轴承外环有缺陷4.振动总量比较小,无离散的轴承故障频率尖峰5.剩余寿命大于10%II.第二阶段1.噪声略增大2.温度正常3.超声,声发射,振动尖峰能量有大的增加,轴承外环有缺陷,4.振动总量略增大(振动加速度总量和振动速度总量)5.对数刻度频谱上可清楚看到轴承故障频率,线性刻度频谱上难得看到,噪声地平明显提高6.剩余寿命5%轴承故障发展的四个阶段III.第三阶段1.可听到噪声2.温度略升高3.非常高的超声,声发射,振动尖峰能量,轴承外环有故障4.振动加速度总量和振动速度总量有大的增加5.在线性刻度的频谱上清楚地看出轴承故障频率及其谐波和边带6.振动频谱噪声地平明显提高7.剩余寿命小于1%IV.第四阶段1.噪声的强度改变2.温度明显升高3.超声,声发射,振动尖峰能量迅速增大,随后逐渐减小,轴承外环处在损坏之前故障状态4.振动速度总量和振动位移总量明显增大,振动加速度总量减小5.较低的轴承故障频率占优势的振动尖峰,振动频谱中噪声地平非常高6.剩余寿命小于0.2%Stage1Stage2Stage3Stage4noapparentchangeontypicalvelocityspectrumdefect’sharmonicfrequenciesappeardefect’sfundamentalfrequenciesalsoappearandmayexhibitsidebandsdefect’sharmonicfrequenciesdevelopmultiplesidebands(haystack),fundamentalfreqs.growandalsodevelopsidebandsdefect’s“fund.”frequencyrangedefect’s“harmonic”frequencyrange轴承故障四个阶段的频谱包络(解调)频谱球/滚动体撞击缺陷产生“冲击波”.轴承“像一个鈡响”(共鸣).解调频谱信号处理过程解调谱与常规频谱振动
本文标题:轴承振动特征分析含轴承故障特征频率的特点及计算
链接地址:https://www.777doc.com/doc-3798231 .html