您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 专题四 方案设计与决策型问题
数学专题四方案设计与决策型问题方案设计与决策问题就是给解题者提供一个问题情境,要求解题者利用所学的数学知识解决题目,这类问题既考查动手操作的实践能力,又培养创新品质,应该引起高度重视.关于一次函数和不等式的方案设计是最近几年中考的命题热点.正确理解题意,找出等量关系,列出函数表达式是解题的关键,分类讨论一定要全面,不能有遗漏.解答决策型问题的一般思路,是通过对题设信息进行全面分析、综合比较、判断优劣,从中寻找到适合题意的最佳方案.例1(2012·南充)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元;(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.【点拨】(1)设大小车辆租车费用分别是x,y元,由题意,列出方程组,求解即可;(2)首先由题分析得出租车总数为6辆,再列方程组解出取值范围,分析即可得解.【解答】(1)设大、小车每辆的租车费分别是x、y元.则x+2y=1000,2x+y=1100.解得x=400,y=300.即大、小车每辆的租车费分别是400元、300元.(2)240名师生都有座位,租车总辆数≥6,每辆车上至少要有一名教师,租车总辆数≤6,故租车总数为6辆.设大车辆数是x辆,则租小车(6-x)辆,则可列方程组45x+306-x≥240,400x+3006-x≤2300.解得4≤x≤5.∵x是正整数,∴x=4或5.于是有两种租车方案,方案一:大车4辆,小车2辆,总租车费用为2200元;方案二:大车5辆,小车1辆,总租车费用为2300元.故最省钱的租车方案是租大车4辆,小车2辆.例2(2012·温州)温州享有“中国笔都”之称,其产品畅销全球.某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时,①根据信息填表:A地B地C地合计产品件数(件)x2x200运费(元)30x②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值.【点拨】(1)①运往B地的产品件数=总件数n-运往A地的产品件数-运往C地的产品件数:运费=相应件数×一件产品的运费;②根据运往B地的件数不多于运往C地的件数,总运费不超过4000元列出不等式组,求得整数解的个数即可;(2)总运费=A产品的运费+B产品的运费+C产品的运费,进而根据函数的增减性及(1)中②得到的x的取值求得n的最小值即可.【解答】(1)①根据信息填表:A地B地C地合计产品件数(件)200-3x运费(元)1600-24x50x56x+1600②由题意得200-3x≤2x,1600+56x≤4000,解得40≤x≤4267.∵x为正整数,∴x=40或41或42,∴有3种方案,分别为:(ⅰ)A地40件,B地80件,C地80件;(ⅱ)A地41件,B地77件,C地82件;(ⅲ)A地42件,B地74件,C地84件.(2)由题意得30x+8(n-3x)+50x=5800,整理得n=725-7x.∵n-3x≥0,∴x≤72.5.又∵x≥0,∴0≤x≤72.5且x为正整数.∵n随x的增大而减小,∴当x=72时,n有最小值为221.考点训练一、选择题(每小题5分,共20分)1.现有球迷150人,欲同时租用A、B、C三种型号客车去观看世界杯足球赛,其中A、B、C三种型号客车的载客量分别为50人、30人、10人,要求每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种B.4种C.5种D.6种【答案】B2.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.请问可行的租车方案有()A.2种B.3种C.4种D.5种【答案】C3.今年4月份,李大叔收获洋葱30吨,黄瓜13吨.现计划租用甲、乙两种货车共10辆,将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨,一辆乙种货车可装洋葱和黄瓜各2吨.李大叔租用甲、乙两种货车的方案有()A.2种B.3种C.4种D.5种【答案】B4.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种【答案】C二、解答题(共80分)5.(12分)(2012·北海)某班有学生55人,其中男生与女生的人数之比为6∶5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?解:(1)设男生有6x人,则女生有5x人.依题意得:6x+5x=55,∴x=5,∴6x=30,5x=25.答:该班男生有30人,女生有25人.(2)设选出男生y人,则选出的女生为(20-y)人.由题意得:20-y-y2y≥7,解得:7≤y9,∴y的整数解为:7、8.当y=7时,20-y=13,当y=8时,20-y=12.答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人.6.(12分)(2012·绥化)在实施“中小学校舍安全工程”之际,某县计划对A、B两类学校的校舍进行改造.根据预测,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校和一所B类学校的校舍所需资金分别是多少万元?(2)该县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所.解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍需资金y万元,则x+3y=4803x+y=400,解得x=90y=130.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍需资金130万元.(2)设A类学校应该有a所,则B类学校有(8-a)所.则20a+308-a≥21090-20a+130-308-a≤770,解得a≤3a≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.7.(14分)(2012·莱芜)为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x个文具盒需要y1元,买x支钢笔需要y2元,求y1、y2关于x的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.解:(1)设每个文具盒x元,每支钢笔y元,由题意得5x+2y=1004x+7y=161,解得x=14y=15.答:每个文具盒14元,每支钢笔15元.(2)由题意知,y1关于x的函数关系式为y1=14×90%x,即y1=12.6x.由题意知,买钢笔10支以下(含10支)没有优惠,故此时的函数关系式为y2=15x.当买10支以上时,超出部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),即y2=12x+30.(3)当y1y2,即12.6x12x+30时,解得x50;当y1=y2,即12.6x=12x+30时,解得x=50;当y1y2,即12.6x12x+30时,解得x50.综上所述,当购买奖品等于10件但少于50件时,买文具盒省钱;当购买奖品等于50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱.8.(14分)(2012·资阳)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20∶1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅(课桌凳和办公桌椅均成套购进).(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.解:(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,则y=x+8010x+4y=2000,解得x=120y=200.答:一套课桌凳和一套办公桌椅的价格分别为120元,200元.(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意有16000≤80000-120×20m-200×m≤24000,解得,21713≤m≤24813,∵m为整数,∴m=22、23、24,有三种购买方案,具体方案如下表:方案一方案二方案三课桌凳(套)440460480办公桌椅(套)2223249.(14分)深圳某科技公司在甲、乙两地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台.运往A、B两馆的运费如下表:出发地目的地甲地乙地A馆800元/台700元/台B馆500元/台600元/台(1)设甲地运往A馆的设备有x台,请填写下表,并求出总运费y(元)与x(台)的函数关系式;出发地目的地甲地乙地A馆x(台)______(台)B馆______(台)______(台)(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?解:(1)出发地目的地甲地乙地A馆x台(18-x)台B馆(17-x)台(x-3)台依题意,得y=800x+700(18-x)+500(17-x)+600(x-3),即y=200x+19300(3≤x≤17).(2)∵要使总运费不高于20200元,∴200x+19300≤20200,解得x≤92.∵3≤x≤17,且设备台数x只能取正整数,∴x只能取3或4.∴该公司的调配方案共有2种,具体方案如下:出发地目的地甲地乙地A馆3台15台B馆14台0台出发地目的地甲地乙地A馆4台14台B馆13台1台(3)由(1)和(2)可知,总运费y=200x+19300(x=3或x=4).由一次函数的性质可知,当x=3时,总运费最小,最小值为ymin=200×3+19300=19900(元).10.(14分)(2012·铜仁)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组8a+3b=950,5a+6b=800,解得a=100,b=50.∴购进一件A种纪念品需要100
本文标题:专题四 方案设计与决策型问题
链接地址:https://www.777doc.com/doc-3819387 .html