您好,欢迎访问三七文档
ABCD1234O第七章相交线与平行线7.1相交线【教学目标】1.了解两条直线相交形成四个角;2.理解对顶角、邻补角的概念;3.掌握对顶角的性质及它的推导过程;4.能运用对顶角的性质解决一些问题.5.培养识图能力.【教学重点】1.对顶角、邻补角的概念;2.对顶角的性质及应用.【对话设计】〖探究1〗两条直线相交所得的角(1)如图,直线AB、CD相交于O,若∠1=140º,你能求出其它3个角的度数吗?(2)两条直线相交所得的四个角之间,有怎样的关系(指位置及大小)?(3)〖结论〗在(1)图中,∠1与∠2是______角,∠1与∠3是____角,∠2的对顶角是______,邻补角是_______________.〖了解邻补角及对顶角的特征〗(见P5)〖探究2〗顾名思义,如果两个角的顶点重合,这两个角是对顶角.这句话对吗?画图说明.〖探究3〗如图,C是直线AB上一点,CD是射线,图中有几个角?哪两个角互为邻补角?有两个角互为对顶角吗?〖结论〗在很多图形中,邻补角还可以看成是一条直线与端点在这条直线上的一条射线组成的两个角.〖探究4〗判断下列语句是否正确:(1)互补的两个角一定是邻补角.(2)一个角的邻补角一定和它互补.(3)邻补角是有特殊位置关系的两个互补的角.〖补充练习〗1.如图,D、E分别是AB、AC上的一点,BE与CD交于点G,若∠B=∠C,猜测图中哪些角是相等的.2.如图,E是AD上一点,图中有互补的角吗?有相等的角吗?为什么?(注意:什么叫对顶角?)3.说明下列语句为什么是错误的:(1)一个锐角和一个钝角一定互补;(2)若两个角互补,则这两个角一定是一个锐角,一个钝角.〖作业〗ABCDEGABCDEABCD7.2相交线与垂线(第一课时)【教学目标】1.理解垂线、垂线段的意义;2.会用三角尺或量角器过一点画已知直线的垂线;3.掌握垂线的性质1.【教学重点】1.区分垂线和垂线段;2.用三角尺或量角器过一点画已知直线的垂线;3.垂线的性质1.【教学难点】怎样画一条线段或射线的垂线.【对话设计】〖探究1〗两条直线相交的特殊情况如图,直线AB、CD相交于O,若∠1=90º,求其它3个角.〖阅读〗了解垂直、垂线和垂足(见P6).〖理解〗日常生活中,两条直线互相垂直的情形很常见(见P6图5.1-6).你能再举出其它例子吗?〖探究2〗过一点画直线的垂线(1)用三角尺画已知直线的垂线,这样的垂线能画出几条?(2)如图,过直线AB上的已知点P,用三角尺画AB的垂线;过直线上一点,可以画几条直线与这条直线垂直?(3)如图,过直线AB外的已知点P,用三角尺画AB的垂线,并注明垂足.过直线外一点,可以画几条直线与这条直线垂直?(4)从直线AB外的已知点P,到直线AB画垂线段,与(3)比较,注意区分垂线和垂线段.〖阅读归纳〗你知道垂线的第一条性质吗(见P7)?请注意理解有与有且只有的区别.〖探究3〗怎样画一条线段或射线的垂线规定:画一条线段或射线的垂线,就是画线段或射线所在直线的垂线.(1)过线段AB外的已知点P,画线段AB的垂线;(2)过射线AB外的已知点P,画射线AB的垂线.〖探究4〗点到直线的距离这是一幅比例尺为1:500000的地图,你能分别求出李庄A到火车站B和吴镇D的距离吗?你认为铁路上是否存在到李庄距离最近的点?〖作业〗P37练习习题ABPABP·ABP·ABc·DABCD1234OABP·7.2垂线(第二课时)【教学目标】1.理解点到直线的距离的意义,并会度量点到直线的距离;2.掌握垂线的性质2;3.感受简单推理.【教学重点】1.点到直线的距离;2.度量点到直线的距离;3.垂线的性质2.【教学难点】区分垂线段与点到直线的距离.【对话设计】〖探究1〗怎样测量跳远的成绩如图,这是你们班的运动员小欣在校运会上跳远后留下的脚印,裁判员怎样测量跳远的成绩?画出皮尺的位置.〖归纳〗你能说出垂线的第二条性质吗?什么叫做点到直线的距离(见P8)?〖探究2〗如图,要从A处到河边B挖一道水渠AB引水,B点一般应选在哪一处?为什么?如果比例尺是1:100000,水渠大约要挖多长?〖课堂练习〗1.从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段(垂线段)叫做三角形的高.请用三角板分别画出下面三角形的三条高(各用三种颜色).2.书上40-41页习题A·起跑线ABCABCABC7.3平行线平行线(第一课时)【教学目标】1.知道三线八角;2.知道同位角、内错角和同旁内角.【对话设计】〖复习〗两条直线相交所成的角共有四个,这四个角之间有哪几种关系?〖有关三线八角的介绍〗一条直线分别同两条直线相交(或者说两条直线被第三条直线所截),构成8个角,这些角中,没有公共顶点的两个角之间有以下三种位置关系:同位角、内错角和同旁内角.如图,直线AB、CD与直线EF相交,∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8都是同位角,共有4对;∠5和∠3,∠6和∠4都是内错角,共有2对;∠3和∠6,∠4和∠5都是同旁内角,共2对.〖探索1〗如图,直线AB、CD与直线EF相交,图中哪几对角是同位角?哪几对角是内错角?哪几对角是同旁内角?〖探索2〗如图,直线AB、CD与直线EF相交,∠5和_____是同位角,和____是内错角,与______是同旁内角.〖探索3〗如图,直线AB、CD与直线EF相交,图中哪几对角是同位角?哪几对角是内错角?哪几对角是同旁内角?〖探索4〗如图,找出∠1的内错角,用红笔一笔画出它们,先观察这两个角是否像英文字母N,再指出它们是哪两条直线被哪一条直线所截而成.〖探索5〗ABCD12345EFABCD12345FE678ABED12345FC678ABCD12345FE678AB1DC如图,已知四边形ABCD是梯形,你能用红笔一笔画出图中任意一对同旁内角吗?图中一有几对同旁内角?〖探索6〗如图,直线EF、CD与直线AB相交,任意找出一对同位角,分别记为∠1和∠2,你能用红笔一笔画出这两个角吗?7.3平行线(第二课时)【教学目标】1.了解空间两条直线的位置关系;2.了解平行线的概念,理解同一平面内两条直线的位置关系;3.认识平行线的性质1、2.【对话设计】〖复习交流〗如图,已知直线AB和直线外一点P,你能过点P画一条直线与AB平行吗?把你的画法与同伴交流,看谁的方法好.〖介绍空间两条直线的位置关系〗如图,与长方体的棱AB平行的棱有__________________等____条,它们都和AB在同一平面内;与AB相交的棱有______________等____条,它们也和AB在同一平面内;棱AB与棱B'C'不相交也不平行,像这样的两条直线叫做异面直线,与AB异面的直线还有______________等____条.〖归纳〗在同一平面内,两条直线的位置关系只有_____、_______两种.〖探索1〗在一张半透明的纸上任意画一条直线AB,在直线外任取一点P,你能折出过点P的平行线吗?试一试,并把你的折法与同伴交流.〖探索2〗经过直线外一点,可以画两条直线和这条直线平行吗?〖平行公理1介绍〗经过直线外一点,有且只有一条直线与这条直线平行.〖释义〗本书中所说的基本事实是人们在长期实践中总结出来的结论,基本事实也称为公理.〖想一想〗如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?〖探索3〗如图,若CD∥AB,且EF∥AB,则CD与EF能不平行吗?为什么?〖平行公理2介绍〗如果两条直线都和第三条直线平行,那么这两条直线也互相平行.〖友情提示〗若a=b=c(字母表示数),那么,a=c,根据的是等式的性质.若a∥b,b∥∥c(字母表示直线),那么a∥b.根据的是平行公理2.ABDCDC'B'A'D'AB·PAB·PCDEFABCDEFABDCABEFDC7.4平行线的判定(第一课时)【教学目标】1.掌握平行线的判定方法;2.了解从平行的判定公理得出其它两种判定方法的过程;3.感受逻辑推理;4.感受把未知化为已知的思想.【教学重点与难点】探索并掌握平行线的判定方法.【对话设计】〖探索1〗我们以前学过用直尺和三角尺画平行线.如果只用一把三角尺可以吗?如果可以,请用这种方法过点P画一条直线与AB平行.你能够说明你所画的直线一定与AB平行吗?〖介绍平行线的判定方法1〗两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.〖说明〗方法1也是基本事实(公理).〖探索2〗木工经常用角尺画平行线,你能说出其中的道理吗(见P15)?如果只要求画平行线,不用角尺(例如只用三角尺中的一个锐角)行吗?〖探索3〗如图,如果∠1=∠2,由平行线的判定方法1,能得出a∥b吗?〖结论〗由平行线的判定方法1,可以得出平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.〖归纳〗遇到一个新问题时,常常把它转化为已知的(或已经解决的)问题来解决.这一节中,我们利用同位角相等,两直线平行得到内错角相等,两直线平行.〖探索4〗如图,现在我们一起来探究:两条直线(a、b)被第三条直线(c)所截,如果同旁内角互补(∠1+∠2=180º),那么这两条直线(a、b)平行吗?〖结论〗由平行线的判定方法1(或2),可以得出平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.〖练习〗如图,分别指出下面各推理的根据:(1)∠2=∠5a∥b;(2)∠4=∠5a∥b;(3)∠3+∠5=180ºa∥b.AB·Pca12bca12bba12345c〖作业〗P47-487.4平行线的判定(第二课时)【教学目标】会应用平行线的判定方法.【对话设计】〖复习思考〗(见P18)〖探索1〗如图,下面的两个角分别是哪两条直线被哪一条直线所截而成?它们是什么角?(1)∠BAC与∠DCA;(2)∠DAC与∠BCA.〖探索2〗如图,a、b、c、d是直线,E、F、G、H是交点,(1)若∠1=∠2,可以证明a∥b,而不能证明c∥d.这是因为∠1和∠2是直线_______和_____被直线____所截而成,它们与直线____无关.(2)同样的道理,若已知∠1=∠3,可以证明______∥______,这是因为它们是直线____和______被直线______所截而成.〖探索3〗如图,BE是AB的延长线,从∠CBE=∠A可以判定_____∥______,这是因为相等的两角是直线____和____被直线____所截而成(与直线_____无关),判定平行的根据是_____________________________________.〖提示〗用彩色笔在图中画出相等的两个角(∠CBE和∠A),理解为什么不能由此推出AB∥CD.〖说明〗学习和运用判定方法1的难点是:(1)判定两个角是不是同位角;(2)确定这两个同位角是哪两条直线被那一条直线所截而成;(3)进而判定可以证明哪两条直线平行.〖探索4〗如图,D是AB上一点,E是AC上一点,,根据判定方法1,如果知道哪两个角相等,就可以证明DE∥BC?〖探索5〗如图,AE与CD相交于O,若∠A=110º,∠1=70º,就可以证明AB∥CD,这是为什么?〖作业〗bHaG123cdFEABDCEABDCEAB1DCEOABDC7.5平行线的性质(第一课时)【教学目标】1.经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.【教学重点】平行线的性质以及应用.【教学难点】平行线的性质公理与判定公理的区别.【对话设计】〖探索1〗反过来也成立吗过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗?再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?〖结论〗如果一个句子是正
本文标题:相交线与平行线教案
链接地址:https://www.777doc.com/doc-3830678 .html