您好,欢迎访问三七文档
2020/2/171第三章转子动平衡低速动平衡(刚性转子动平衡)工艺平衡装配平衡一步平衡多步平衡本机平衡整机(台架)平衡国际标准—ISO1940高速动平衡(柔性转子动平衡)模态平衡法影响系数法混合法参考标准:DIS5406《柔性转子动平衡》标准草案DIS5343《评价柔性转子平衡的准则》(参考)2020/2/172第一节概述一、刚性转子动平衡1、静平衡目标:平衡静力方法:随遇平衡法2、动平衡目标:平衡力与力矩方法:动平衡机、低速平衡工艺平衡装配平衡一步平衡多步平衡本机平衡整机平衡国际标准—ISO19403、动平衡基本要求1)至少两个平衡面,平衡面距离要远,并尽能靠近支点;平衡配重半径位置要尽可能大,以便达到最大效果。2020/2/1732)一步平衡,多为短寿命军用发动机采用3)多步平衡,多为长寿命民用发动机采用4)平衡方法:寻找重点寻找轻点(频闪法)影响系数法极坐标矢量图法三元平衡法5)原理:不平衡力Pj产生支反力FP1与FP2不平衡力矩RL产生支反力FR1与FR2则在支点有合力动平衡:动平衡精度1)me≤G0(g.cm)工程实际应用2)eω≤G0(mm/s)国际标准—ISO1940将平衡品质分为11个等级,按比值为2.5的等比级数递增排列。111PRFFF222PRFFF'21111FmeF'22222FmeF2020/2/174第二节柔性转子动平衡一、柔性转子平衡特点1.柔性转子:nncr1,转轴产生弯曲变形2.高速动平衡:多平面、多转速平衡过程目的:1)将不平衡力与不平衡力偶降到许可范围2)将n阶固有振型不平衡量降到许可范围3.标准:1)国际标准草案DIS5406—《柔性转子动平衡》2)参考标准5343《柔性转子动平衡》4.方法:1)振型(模态)平衡法2)影响系数法3)混合法等2020/2/1755.平衡特点1)刚性转子,低速平衡后,在工作转速以下运行平稳;2)柔性转子,低速平衡后,仅平衡了低速下支承动反力,高速下轴产生弯曲变形,弯矩将随转速发生变化,支承动反力也将发生变化;3)柔性转子动平衡目的:在工作转速下,尽可能消除支承动反力,并使转子沿轴长的弯矩最小如图3-1所示,刚性转子有对柔性转子有2020/2/176F为转子变形产生的离心力。4)影响因素多:a)不同转速下挠度影响b)各阶振型对平衡的影响5)实际发动机只有少数几个平面可用于平衡;只能在有限个转速上得到平衡。6)问题:如何利用少数几个平面来获得一定转速范围内转子的良好平衡。7)假设条件:a)在一定平衡条件下,轴承振幅与转子不平衡量成正比。b)轴承振幅与不平衡力之间的相位不变。c)转子中非线性因素(如油膜)等影响,不影响上述假设条件2020/2/177二、转子在不平衡力作用下的运动方程设一转子为等截面轴,简支在各向同性的支承上轴的面积为A,单位长度质量为ρA,截面质心为G(z),截面偏心距为ε(z),质心连线为一空间曲线。如图所示。根据牛顿运动定律,得到yoz平面内的运动方程:其中则有由材料力学可知代入运动方程得到z2020/2/178同理可得到xoz平面内的运动方程为引入复数表达式,令则有式中:为质心空间曲线1.设ε(z)=0,即无质量偏心的情况,运动方程为设解为代入运动方程中2020/2/179并令得到特征方程为则所以代入边界条件:z=0,s(0)=0,z=l,s(l)=0,解得:c2=c3=c4=0,c1sin(kl)=0要求非零解,则c1≠0,所以sin(kl)=0因此有:kl=nπ得到固有频率为24AkEJ440k1,2ik3,4k1234()sin()cos()()()szckzckzcshkzcchkz''(0)0s''()0sl4z2020/2/1710各阶主振型为:前三阶振型为2.设ε(z)≠0,即有质量偏心的情况,且质心按第n阶主振型函数(平面)分布,运动方程为设解为代入运动方程得根据假设,α(z)=常数,则有()()()iznnzeAsz2020/2/1711式中:An为系数,sn(z)为第n阶主振型由运动微分方程,得到设特解为Dn为待定系数代入运动方程得方程的齐次通解为sn(z),且有故有特解方程为得到系数故转轴的振型为由此得到如下结论:2020/2/17121)若质心按第n阶振型分布,只激起第n阶主振动2)转轴振型为一平面曲线,振幅为倍3)当ω→ωn时,振幅→∞,产生第n阶主振型共振3.ε(z)≠0,且质心为任意空间分布曲线,设为按主振型分解得即有质心分布示意图见图3-4所示222/()n()()izze2020/2/1713式中代入运动方程有设转轴振型为代入运动方程得式中Sn(z)为第n阶振型函数,也是对应齐次方程解所以有特解为2020/2/1714利用固有振型的正交性,得解得系数转子振动为或2020/2/1715三、柔性转子运动特点1.柔度曲线s(z)随转速ω而变变化1)ωωc1时,很小,可视为刚性转子;2)ω0.6ωc1,系数将增大,转子振型s(z)是各阶主振型合成的空间曲线;3)ω→ωcn时,第n阶主振型幅值系数明显增大,其它各阶则小很多;若ω→ωc1,此时振型近似有4)随着转速增加,各阶主振型依次突现出来,一般转子,主要是前三阶主振型的影响。比较挠度曲线与不平衡量的关系,它们展开项相同,幅值相差一个倍率,考虑阻尼有2020/2/1716式中ωcr——为无阻尼时系统的固有频率。αr为挠度曲线各阶分量与该阶不平衡分量的相位差。由于阻尼影响,即使在临界转速下,转子振型也不是一根平面曲线,但实际进行动平衡时,仍以无阻尼的主振型平面加以考虑。3.转子主振型的正交性不平衡分布力在x、y方向的分量为2020/2/1717转子挠曲线在x、y轴上的投影为各阶不平衡力在yoz平面和xoz平面上对k阶振型做功之和为由主振型正交性2020/2/1718可知:1)各阶主振动之间不发生能量传递;2)n阶不平衡分量只能激起n阶主振型,不会激起其它各阶振型;3)利用主振型的正交性,可对转子进行逐阶平衡,完成柔性转子动平衡。2020/2/1719第三节模态平衡法(振型平衡法)一、模态平衡法及平衡条件根据主振型的正交性,可采用逐阶平衡的办法进行柔性转子动平衡。对于一般转子,主要是前三阶振型。以等截面轴为例进行分析,见图3-5设距起始端z1处有一集中重量w1位于半径R1上,集中重量均匀分布在2b的范围内,以U(z)表示其分布。则式中:2020/2/1720取单位长度质量为m(=ρA),则有上式代表集中重量矩折合成单位长轴段质心偏移,按各阶主振型展开成式中:Cn1——n阶主振型系数,第二个下标表示所加平衡重量编号;sn(z)——各阶主振型函数,假设为已知。利用正交性,对折合轴段质心偏移展开式两边乘以sn(z),并沿轴长积分,等式左边为:等式左边为:由此可得:2020/2/1721若在不同位置z1、z2、…、zk截面上,分别在半径R1、R2、…、Rk处加平衡配重W1、W2、…、Wk,k个平衡重量引起转子质心的偏移为式中:为了平衡转子第n阶主振型分量,要求平衡重量形成的第n阶振型质心偏移和转子自身第n阶主振型质心偏移在同一平面上,大小相等,方向相反,即满足即若有一组k个最小的不平衡重量Uj,与n阶不平衡量相当,即2020/2/1722式中:U(z)——转子不平衡量分布函数。其中:值应为最小。称这组量Uj(j=1~k)为第n阶振型不平衡当量Une,即柔性转子的平衡不考虑阻尼情况下应满足下列三个力学平衡方程:kjjU1||2020/2/1723方程组中,第一、第二两式为刚性平衡条件;第三式为柔性平衡条件。二、配重面的选择及矢量平衡原理1)柔性转子平衡为多平面多转速平衡;2)平衡面选取:有N平面及N+2平面法两种;N平面法:平衡N阶振型,选用N个平衡面;N+2平面法:平衡N阶振型,选用N+2个平衡面。一般N平面法不能完全平衡支承动反力。但两种方法都有使用。平衡面选择很重要,选择不当将使平衡配重增大。原因:平衡面选择主要依据转子振型,实际发动机平衡面选择受到限制。图3-6为N+2平面法的平衡面选取。I、II平衡面消除III、IV、V平衡面对低速动平衡的影响。2020/2/1724通常选择在紧靠支承的位置,以免影响高速时III、IV、V三个平面对振型不平衡量的校正。但由于在临界转速时,支承位移较大,I、II平面的校正量对III、IV、V平面仍有一定干扰。图3-6(a)为平衡一阶振型时的三个平面的校正量,平面III的校正量对二阶振型不起作用。图3-6(b)、(c)为平衡二阶及三阶振型的校正量组。测量柔性转子振型比较困难,可以轴承处的振动代替测量转子挠度。即矢量平衡法。图3-7为矢量平衡三角形:矢量为转子测点相对某一角向参考坐标测得的振动,矢量为转子上某点加试配重后同转速下测点与参考坐标下测得的振动,则矢量=—为试重P的响应。为消除原始振动,加试配重平面上所需校正量为:MNNMNM2020/2/1725式中:称为影响系数矢量(用于影响系数法)称为反应系数矢量(用于模态平衡法)试重在原方位反时针旋转θ角,其重量按OM对MN之比放大,即为校正量。平衡步骤:1)在第一阶临界转速附近测得两轴承处振动矢量、,分解为对称矢量,该分量由一阶振型分量引起。2)加试配重后,在同一转速下测得振动、,则矢量为试重引起的对称振动矢量。PMNMNMcP0A0B200BAsP01A01B)(22000101BABAsP2020/2/17263)平衡一阶振型分量的校正重量为:4)平衡二阶振型分量时,在二阶临界转速nc2附近测得两轴承振动及,其反对称分量为,它由二阶不平衡量引起,加反对称试重后,测得两轴承处的振动矢量为及,则矢量即为引起的反对称振动分量,故应加校正量为:0A0B200BAsP01A01B)(22000101BABAsP2020/2/1727三、柔性转子平衡时的支承动反力柔性转子动平衡目的:1)消除支承动反力;2)消除转子挠度与弯矩。难于同时满足,则以最少的配重使转子在轴向、水平及垂直三方向振动在整个转速范围内最小。柔性转子挠曲振型为:设各阶振型函数为(简支梁情况):则转子振型为转子原始不平衡n阶分量可写成,则转子变形为zlnBAnnsin222020/2/1728支承动反力刚性部分由力矩平衡关系得设m(z)=m(常数——等截面轴),上式积分整理得柔性部分支承动反力为积分整理得因此,一个轴承上所受到的总动反力为2020/2/1729将代入得或由材料力学,通过振型函数求导得1.平衡一阶振型分量后的支承动反力设(简支梁)一阶振型分量为C1sin(nπ/l),其中则一阶挠曲振型为442)(mlEJnn21211BAC2020/2/1730设采用位于中部的一个集中质量校正,即z1=l/2,校正量为W1R1,由(3-31)式得由于n=1,z=l/2,故有若所选校正量满足C1=C11,即或此时,转子中部的一个校正量W1R1可以使一阶不平衡分量获得平衡,消除了柔性部分的动反力。转子一阶振型不平衡分量引起刚性部分的动反力为校正量W1R1加在中部后,一个支承上的动反力为2020/2/1731比较(3-47)和(3-48),得可见:1)转子中部的一个集中平衡配重可使转子挠曲得以平衡,但不能全部消除转子的动力。2)支承处刚性部分动反力只能平衡掉78.5%。3)为消除支承处一阶振型全部动反力,应在支承处同侧平面上加平衡配重W2及W3,若加重
本文标题:转子动平衡教程
链接地址:https://www.777doc.com/doc-3833275 .html