您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2009年山东省高考数学试卷(文科)答案与解析
12009年山东省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•山东)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2D.4【考点】并集及其运算.菁优网版权所有【专题】集合.【分析】根据题意,由并集的计算方法,结合a与a2的关系,易得,即可得答案.【解答】解:∵A={0,2,a},B={1,a2},A∪B={0,1,2,4,16}∴∴a=4,故选D.【点评】本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.2.(5分)(2009•山东)复数等于()A.1+2iB.1﹣2iC.2+iD.2﹣i【考点】复数代数形式的乘除运算.菁优网版权所有【专题】数系的扩充和复数.【分析】将分子和分母同时乘以分母的共轭复数,再利用两个向量的乘法法则化简.【解答】解:复数===2+i,故选C.【点评】本题考查两个复数代数形式的乘除法法则的应用,两个复数相除,分子和分母同时乘以分母的共轭复数.3.(5分)(2009•山东)将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是()A.y=2cos2xB.y=2sin2xC.D.y=cos2x【考点】函数y=Asin(ωx+φ)的图象变换.菁优网版权所有【专题】三角函数的图像与性质.【分析】按照向左平移,再向上平移,推出函数的解析式,即可.【解答】解:将函数y=sin2x的图象向左平移个单位,2得到函数=cos2x的图象,再向上平移1个单位,所得图象的函数解析式为y=1+cos2x=2cos2x,故选A.【点评】本题考查函数y=Asin(ωx+φ)的图象变换,考查图象变化,是基础题.4.(5分)(2009•山东)一空间几何体的三视图如图所示,则该几何体的体积为()A.2π+2B.4π+2C.2π+D.4π+【考点】由三视图求面积、体积.菁优网版权所有【专题】立体几何.【分析】由三视图及题设条件知,此几何体为一个上部是四棱锥,下部是圆柱其高已知,底面是半径为1的圆,故分别求出两个几何体的体积,再相加即得组合体的体积.【解答】解:此几何体为一个上部是正四棱锥,下部是圆柱由于圆柱的底面半径为1,其高为2,故其体积为π×12×2=2π棱锥底面是对角线为2的正方形,故其边长为,其底面积为2,又母线长为2,故其高为由此知其体积为=故组合体的体积为2π+故选C【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,其方法是分部来求,再求总体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.35.(5分)(2009•山东)在R上定义运算⊗:a⊗b=ab+2a+b,则满足x⊗(x﹣2)<0的实数x的取值范围为()A.(0,2)B.(﹣2,1)C.(﹣∞,﹣2)∪(1,+∞)D.(﹣1,2)【考点】一元二次不等式的解法.菁优网版权所有【专题】不等式的解法及应用.【分析】根据规定的新定义运算法则先把不等式化简,然后利用一元二次不等式求解集的方法求出x的范围即可.【解答】解:∵x⊙(x﹣2)=x(x﹣2)+2x+x﹣2<0,∴化简得x2+x﹣2<0即(x﹣1)(x+2)<0,得到x﹣1<0且x+2>0①或x﹣1>0且x+2<0②,解出①得﹣2<x<1;解出②得x>1且x<﹣2无解.∴﹣2<x<1.故选B【点评】此题是一道基础题,要求学生会根据已知的新定义化简求值,会求一元二次不等式的解集.6.(5分)(2009•山东)函数y=的图象大致为()A.B.C.D.【考点】函数的图象与图象变化.菁优网版权所有【专题】函数的性质及应用.【分析】欲判断图象大致图象,可从函数的定义域{x|x≠0}方面考虑,还可从函数的单调性(在函数当x>0时函数为减函数)方面进行考虑即可.【解答】解析:函数有意义,需使ex﹣e﹣x≠0,其定义域为{x|x≠0},排除C,D,又因为,所以当x>0时函数为减函数,故选A答案:A.4【点评】本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考查其余的性质.7.(5分)(2009•山东)定义在R上的函数f(x)满足,则f(2009)的值为()A.﹣1B.0C.1D.2【考点】分段函数的解析式求法及其图象的作法;函数的值;对数的运算性质.菁优网版权所有【专题】函数的性质及应用.【分析】本题考查的知识点是分段函数的性质及对数的运算性质,要求f(2009)的值,则函数的函数值必然呈周期性变化,由函数的解析式,我们列出函数的前若干项的值,然后归纳出函数的周期,即可求出f(2009)的值.【解答】解:由已知得f(﹣1)=log22=1,f(0)=0,f(1)=f(0)﹣f(﹣1)=﹣1,f(2)=f(1)﹣f(0)=﹣1,f(3)=f(2)﹣f(1)=﹣1﹣(﹣1)=0,f(4)=f(3)﹣f(2)=0﹣(﹣1)=1,f(5)=f(4)﹣f(3)=1,f(6)=f(5)﹣f(4)=0,所以函数f(x)的值以6为周期重复性出现.,所以f(2009)=f(5)=1,故选C.故选C.【点评】分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.8.(5分)(2009•山东)设P是△ABC所在平面内的一点,,则()A.B.C.D.【考点】向量的加法及其几何意义;向量的三角形法则.菁优网版权所有【专题】平面向量及应用.【分析】根据所给的关于向量的等式,把等式右边二倍的向量拆开,一个移项一个和左边移来的向量进行向量的加减运算,变形整理,得到与选项中一致的形式,得到结果.【解答】解:∵,∴,∴∴5∴故选B.【点评】本题考查了向量的加法运算和平行四边形法则,可以借助图形解答.向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好向量的加减运算.9.(5分)(2009•山东)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件;空间中直线与平面之间的位置关系.菁优网版权所有【专题】空间位置关系与距离;简易逻辑.【分析】判充要条件就是看谁能推出谁.由m⊥β,m为平面α内的一条直线,可得α⊥β;反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m⊥β.【解答】解:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,且m⊥β,则α⊥β,反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m⊥β,所以“α⊥β”是“m⊥β”的必要不充分条件.故选B.【点评】本题考查线面垂直、面面垂直问题以及充要条件问题,属基本题.10.(5分)(2009•山东)设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为()A.y2=±4xB.y2=4xC.y2=±8xD.y2=8x【考点】抛物线的标准方程.菁优网版权所有【专题】圆锥曲线的定义、性质与方程.【分析】先根据抛物线方程表示出F的坐标,进而根据点斜式表示出直线l的方程,求得A的坐标,进而利用三角形面积公式表示出三角形的面积建立等式取得a,则抛物线的方程可得.【解答】解:抛物线y2=ax(a≠0)的焦点F坐标为,则直线l的方程为,它与y轴的交点为A,所以△OAF的面积为,解得a=±8.所以抛物线方程为y2=±8x,故选C.【点评】本题主要考查了抛物线的标准方程,点斜式求直线方程等.考查学生的数形结合的思想的运用和基础知识的灵活运用.611.(5分)(2009•山东)在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.【考点】几何概型.菁优网版权所有【专题】概率与统计.【分析】求出所有的基本事件构成的区间长度;通过解三角不等式求出事件“cosx的值介于0到”构成的区间长度,利用几何概型概率公式求出事件的概率.【解答】解:所有的基本事件构成的区间长度为∵解得或∴“cosx的值介于0到”包含的基本事件构成的区间长度为由几何概型概率公式得cosx的值介于0到之间的概率为P=故选A.【点评】本题考查结合三角函数的图象解三角不等式、考查几何概型的概率公式.易错题.12.(5分)(2009•山东)已知定义在R上的奇函数f(x),满足f(x﹣4)=﹣f(x)且在区间[0,2]上是增函数,则()A.f(﹣25)<f(11)<f(80)B.f(80)<f(11)<f(﹣25)C.f(11)<f(80)<f(﹣25)D.f(﹣25)<f(80)<f(11)【考点】奇偶性与单调性的综合.菁优网版权所有【专题】函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系进行转化求解即可.【解答】解:∵f(x﹣4)=﹣f(x),∴f(x﹣8)=﹣f(x﹣4)=f(x),即函数的周期是8,则f(11)=f(3)=﹣f(3﹣4)=﹣f(﹣1)=f(1),f(80)=f(0),f(﹣25)=f(﹣1),∵f(x)是奇函数,且在区间[0,2]上是增函数,∴f(x)在区间[﹣2,2]上是增函数,∴f(﹣1)<f(0)<f(1),即f(﹣25)<f(80)<f(11),故选:D【点评】本题主要考查函数值的大小比较,根据函数的奇偶性和单调性之间的关系进行转化是解决本题的关键.7二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2009•山东)在等差数列{an}中,a3=7,a5=a2+6,则a6=13.【考点】等差数列的性质.菁优网版权所有【专题】等差数列与等比数列.【分析】根据等差数列的性质可知第五项减去第二项等于公差的3倍,由a5=a2+6得到3d等于6,然后再根据等差数列的性质得到第六项等于第三项加上公差的3倍,把a3的值和3d的值代入即可求出a6的值.【解答】解:由a5=a2+6得到a5﹣a2=3d=6,所以a6=a3+3d=7+6=13故答案为:13【点评】此题考查学生灵活运用等差数列的性质解决实际问题,是一道基础题.14.(4分)(2009•山东)若函数f(x)=ax﹣x﹣a(a>0,且a≠1)有两个零点,则实数a的取值范围是(1,+∞).【考点】函数的零点.菁优网版权所有【专题】函数的性质及应用.【分析】根据题设条件,分别作出令g(x)=ax(a>0,且a≠1),h(x)=x+a,分0<a<1,a>1两种情况的图象,结合图象的交点坐标进行求解.【解答】解:令g(x)=ax(a>0,且a≠1),h(x)=x+a,分0<a<1,a>1两种情况.在同一坐标系中画出两个函数的图象,如图,若函数f(x)=ax﹣x﹣a有两个不同的零点,则函数g(x),h(x)的图象有两个不同的交点.根据画出的图象只有当a>1时符合题目要求.故答案为:(1,+∞)【点评】作出图象,数形结合,事半功倍.15.(4分)(2009•山东)执行程序框图,输出的T=30.8【考点】程序框图.菁优网版权所有【专题】算法和程序框图.【分析】本题首先分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量T的值,模拟程序的运行,运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:按照程序框图依次执行为S=5,n=2,T=2;S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30.故答案为
本文标题:2009年山东省高考数学试卷(文科)答案与解析
链接地址:https://www.777doc.com/doc-3843223 .html