您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 2015年09月29日yzf的初中数学组卷
第1页(共42页)2015年09月29日yzf的初中数学组卷一.选择题(共10小题)1.(2015•天桥区一模)如图,过y轴上一个动点M作x轴的平行线,交双曲线于点A,交双曲线于点B,点C、点D在x轴上运动,且始终保持DC=AB,则平行四边形ABCD的面积是()A.7B.10C.14D.282.(2015•泰安模拟)函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()A.B.C.D.3.(2015•潍坊模拟)若函数y=的自变量x的取值范围是全体实数,则c的取值范围是()A.c<1B.c=1C.c>1D.c≤14.(2015•杭州模拟)下列关于函数y=(m2﹣1)x2﹣(3m﹣1)x+2的图象与坐标轴的公共点情况:①当m≠3时,有三个公共点;②m=3时,只有两个公共点;③若只有两个公共点,则m=3;④若有三个公共点,则m≠3.其中描述正确的有()个.A.一个B.两个C.三个D.四个5.(2015•天桥区一模)如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;第2页(共42页)②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②④B.①②⑤C.②③④D.③④⑤6.(2013•镇江)如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条7.(2012•淮安模拟)如图,直线y=kx(k<0)与双曲线交于A(x1,y1),B(x2,y2)两点,则3x1y2﹣8x2y1的值为()A.﹣5B.﹣10C.5D.108.(2012•德清县校级模拟)如图,已知第一象限的双曲线与正方形ACOE的两边相交于D,B两点,直线经过B点.则AD:DE的值是()第3页(共42页)A.3B.4C.2.5D.3.59.(2012•杭州模拟)已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数10.(2011•连城县校级自主招生)如图已知A1,A2,A3,…An是x轴上的点,且OA1=A1A2=A2A3=A3A4=…=An﹣1An=1,分别过点A1,A2,A3,…An′作x轴的垂线交二次函数y=x2(x>0)的图象于点P1,P2,P3,…Pn,若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3,…依次进行下去,最后记△Pn﹣1Bn﹣1Pn(n>1)的面积为Sn,则Sn=()A.B.C.D.二.填空题(共10小题)11.(2015•黄冈中学自主招生)如果函数y=b的图象与函数y=x2﹣3|x﹣1|﹣4x﹣3的图象恰有三个交点,则b的可能值是.12.(2015•杭州模拟)线段OA=2(O为坐标原点),点A在x轴的正半轴上.现将线段OA绕点O逆时针旋转α度,且0<α<90.第4页(共42页)①当α等于时,点A落在双曲线上;②在旋转过程中若点A能落在双曲线上,则k的取值范围是.13.(2015•邯郸一模)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为.14.(2015•茂名模拟)如图,正比例函数y=kx与反比例函数的图象相交于点A、B,过B作x轴的垂线交x轴于点C,连接AC,则△ABC的面积是.15.(2015•淄博模拟)如图,直线y=x与双曲线y=(x>0)交于点A,将直线y=x向下平移个6单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,则C点的坐标为;若=2,则k=.第5页(共42页)16.(2015•东至县一模)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在时,y随x的增大而减小;④当m≠0时,函数图象经过x轴上一个定点.其中正确的结论有.(只需填写序号)17.(2014•武汉模拟)如图:两个等腰直角三角形的两个直角顶点A、C都在y=上,若D(﹣8,0),则k=.18.(2013•陕西)如果一个正比例函数的图象与反比例函数y=的图象交于A(x1,y1),B(x2,y2)两点,那么(x2﹣x1)(y2﹣y1)的值为.19.(2013•桂林)函数y=x的图象与函数y=的图象在第一象限内交于点B,点C是函数y=在第一象限图象上的一个动点,当△OBC的面积为3时,点C的横坐标是.第6页(共42页)20.(2013•宁波)如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为.三.解答题(共9小题)21.(2016•贵阳模拟)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.22.(2015•黄冈中学自主招生)如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动.设PQ交直线AC于点G.(1)求直线AC的解析式;(2)设△PQC的面积为S,求S关于t的函数解析式;(3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形.直接写出所有满足条件的M点的坐标;第7页(共42页)(4)过点P作PE⊥AC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由.23.(2015•大庆校级模拟)近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每千克销售(元)40393837…30每天销量(千克)60657075…110设当单价从40元/千克下调了x元时,销售量为y千克;(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?利润最大是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32元/千克,问一次进货最多只能是多少千克?(4)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?24.(2015•营口模拟)如图,二次函数的图象经过点A(4,0),B(﹣4,﹣4),且与y轴交于点C.(1)试求此二次函数的解析式;(2)试证明:∠BAO=∠CAO(其中O是原点);(3)若P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交此二次函数图象及x轴于Q、H两点,试问:是否存在这样的点P,使PH=2QH?若存在,请求出点P的坐标;若不存在,请说明理由.第8页(共42页)25.(2014•仙桃)已知抛物线经过A(﹣2,0),B(0,2),C(,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q.设点P的运动时间为t秒.(1)求抛物线的解析式;(2)当BQ=AP时,求t的值;(3)随着点P的运动,抛物线上是否存在一点M,使△MPQ为等边三角形?若存在,请直接写t的值及相应点M的坐标;若不存在,请说明理由.26.(2013•营口)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?第9页(共42页)27.(2013•安徽模拟)已知:一次函数y=x+1与反比例函数y=的图象交于点A、B两点,点A的坐标为(a,3).(1)求a和m的值;(2)求△OAB的面积S△OAB.28.(2013•怀远县模拟)工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?(3)在(2)的情况下,物价部门规定该商场在该工艺品的经营上每天获得的利润不能超过4800元,而商场在该商品的经营中,每天所获得的利润不想低于4704元,应该如何定价该工艺品?29.(2013•安徽模拟)某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品向总公司交a元的管理费,预计当每件产品的售价为x(6≤x≤11)元时,每月的销售量为(12﹣x)万件,其中管理费a元与售价x元之间的关系如图象所示.(1)试写出管理费a元与售价x元之间的函数关系式;(2)求分公司每月的利润w万元与每件产品的售价x元之间的函数关系式;(3)求出当售价定为多少元时,分公司利润最高,最高利润是多少万元?第10页(共42页)2015年09月29日yzf的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2015•天桥区一模)如图,过y轴上一个动点M作x轴的平行线,交双曲线于点A,交双曲线于点B,点C、点D在x轴上运动,且始终保持DC=AB,则平行四边形ABCD的面积是()A.7B.10C.14D.28考点:反比例函数综合题.菁优网版权所有专题:计算题;压轴题.分析:设出M点的坐标,可得出过M与x轴平行的直线方程为y=m,将y=m代入反比例函数y=﹣中,求出对应的x的值,即为A的横坐标,将y=m代入反比例函数y=中,求出对应的x的值,即为B的横坐标,用B的横坐标减去A的横坐标求出AB的长,根据DC=AB,且DC与AB平行,得到四边形ABCD为平行四边形,过B作BN垂直于x轴,平行四边形的底边为DC,DC边上的高为BN,由B的纵坐标为m,得到BN=m,再由求出的AB的长,得到DC的长,利用平行四边形的面积等于底乘以高可得出平行四边形ABCD的面积.解答:解:设M的坐标为(0,m)(m>0),则直线AB的方程为:y=m,将y=m代入y=﹣中得:x=﹣,∴A(﹣,m),将y=m代入y=中得:x=,∴B(,m),∴DC=AB=﹣(﹣)=,过B作BN⊥x轴,则有BN=m,第11页(共42页)则平行四边形ABCD的面积S=DC•BN=•m=14.故选C.点评:此题属于反比例函数综合题,涉及的知识有:平面直角坐标系与坐标,反比例
本文标题:2015年09月29日yzf的初中数学组卷
链接地址:https://www.777doc.com/doc-3877578 .html