您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学公式总结【全】【10-12】
§1.5、函数xAysin的图象1、对于函数:sin0,0yAxBA有:振幅A,周期2T,初相,相位x,频率21Tf.2、能够讲出函数xysin的图象与sinyAxB的图象之间的平移伸缩变换关系.①先平移后伸缩:sinyx平移||个单位sinyx(左加右减)横坐标不变sinyAx纵坐标变为原来的A倍纵坐标不变sinyAx横坐标变为原来的1||倍平移||B个单位sinyAxB(上加下减)②先伸缩后平移:sinyx横坐标不变sinyAx纵坐标变为原来的A倍纵坐标不变sinyAx横坐标变为原来的1||倍平移个单位sinyAx(左加右减)平移||B个单位sinyAxB(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()yx,x∈R及函数cos()yx,x∈R(A,,为常数,且A≠0)的周期2||T;函数tan()yx,,2xkkZ(A,ω,为常数,且A≠0)的周期||T.对于sin()yAx和cos()yAx来说,对称中心与零点相联系,对称轴与最值点联系.求函数sin()yAx图像的对称轴与对称中心,只需令()2xkkZ与()xkkZ解出x即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式利用图像特征:maxmin2yyA,maxmin2yyB.要根据周期来求,要用图像的关键点来求.§1.6、三角函数模型的简单应用1、要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:sincostan1242642632§3.1.2、两角和与差的正弦、余弦、正切公式1、sincoscossinsin2、sincoscossinsin3、sinsincoscoscos4、sinsincoscoscos5、tantan1tantantan.6、tantan1tantantan.§3.1.3、二倍角的正弦、余弦、正切公式1、cossin22sin,变形:12sincossin2.2、22sincos2cos1cos222sin21.变形如下:升幂公式:221cos22cos1cos22sin降幂公式:221cos(1cos2)21sin(1cos2)23、2tan1tan22tan.4、sin21cos2tan1cos2sin2§3.2、简单的三角恒等变换1、注意正切化弦、平方降次.2、辅助角公式)sin(cossin22xbaxbxay(其中辅助角所在象限由点(,)ab的象限决定,tanba).第二章:平面向量§2.1.1、向量的物理背景与概念1、了解四种常见向量:力、位移、速度、加速度.2、既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、向量AB的大小,也就是向量AB的长度(或称模),记作AB;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3、相等向量与共线向量1、长度相等且方向相同的向量叫做相等向量.§2.2.1、向量加法运算及其几何意义1、三角形加法法则和平行四边形加法法则.2、ba≤ba.§2.2.2、向量减法运算及其几何意义1、与a长度相等方向相反的向量叫做a的相反向量.2、三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、规定:实数与向量a的积是一个向量,这种运算叫做向量的数乘.记作:a,它的长度和方向规定如下:⑴aa,⑵当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反.2、平面向量共线定理:向量0aa与b共线,当且仅当有唯一一个实数,使ab.§2.3.1、平面向量基本定理1、平面向量基本定理:如果21,ee是同一平面内的两个不共线向量,那么对于这一平面内任一向量a,有且只有一对实数21,,使2211eea.§2.3.2、平面向量的正交分解及坐标表示1、yxjyixa,.§2.3.3、平面向量的坐标运算1、设2211,,,yxbyxa,则:⑴2121,yyxxba,⑵2121,yyxxba,⑶11,yxa,⑷1221//yxyxba.2、设2211,,,yxByxA,则:1212,yyxxAB.§2.3.4、平面向量共线的坐标表示1、设332211,,,,,yxCyxByxA,则⑴线段AB中点坐标为222121,yyxx,⑵△ABC的重心坐标为33321321,yyyxxx.§2.4.1、平面向量数量积的物理背景及其含义1、cosbaba.2、a在b方向上的投影为:cosa.3、22aa.4、2aa.5、0baba.§2.4.2、平面向量数量积的坐标表示、模、夹角1、设2211,,,yxbyxa,则:⑴2121yyxxba⑵2121yxa⑶121200ababxxyy⑷1221//0ababxyxy2、设2211,,,yxByxA,则:212212yyxxAB.3、两向量的夹角公式121222221122cosxxyyababxyxy4、点的平移公式平移前的点为(,)Pxy(原坐标),平移后的对应点为(,)Pxy(新坐标),平移向量为(,)PPhk,则.xxhyyk函数()yfx的图像按向量(,)ahk平移后的图像的解析式为().ykfxh§2.5.1、平面几何中的向量方法§2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量:若A、B是直线l上的任意两点,则AB为直线l的一个方向向量;与AB平行的任意非零向量也是直线l的方向向量.⑵.平面的法向量:若向量n所在直线垂直于平面,则称这个向量垂直于平面,记作n,如果n,那么向量n叫做平面的法向量.⑶.平面的法向量的求法(待定系数法):①建立适当的坐标系.②设平面的法向量为(,,)nxyz.
本文标题:高中数学公式总结【全】【10-12】
链接地址:https://www.777doc.com/doc-3914698 .html