您好,欢迎访问三七文档
1第四章不定积分(A层次)1.xxdxcossin;2.dxxx2112;3.21xxdx;4.xdxx7sin5sin;5.dxxxxarctg1;6.21xxdx;7.arctgxdxx2;8.dxxlncos;9.dxxxxx3458;10.dxxx2831;11.xdxx2cos;12.dxex3;13.xxxdxlnlnln;14.21xedx;15.dxexexx21;16.dxx3sin;17.dxxx1arcsin;18.dxxx321ln;19.dxxxxxsin2cos5sin3cos7;20.dxxxx21ln;21.xdxx35cossin;22.dxxxtgxsincosln;23.dxxx2arccos2110;24.arctgxdxx2;25.dxxxx1122;26.dxxax222;27.dxtgxex221;28.321xxxxdx;29.xxdxsincos2;30.dxxxxxex23sincossincos。(B层次)1.设xf的一个原函数为xxsin,求dxxfx2。2.dxxexxx11;3.dxxxx2lnln1;4.dxxx1ln;5.dxxx32ln;6.dxxx2sinsinln;7.dxexexx2;8.dxxx2321ln;9.xdxxarcsin12;10.dxxxx231arccos;211.323xxdx;12.dxxxarctgx11112;13.dxxxtgx32cos;14.dxxx1ln;15.dxxx1arcsin;16.dxxxarctgx221;17.dxxx2111;18.xbxadx222sincos;19.dxxxxcossin1sin;(C层次)1.设xF为xf的一个原函数,10F,0xF,且当0x时,有212xxexFxfx,求xf。2.设0,12ln0,00,2sinxxxxxxf,求xf的一个原函数。3.设xf为x的连续函数,且满足方程:Cxxdttftdttfxx981816120,求xf及常数C。4.设xxxf1lnln,计算dxxf。5.设2ln1222xxxf,且xxfln,求dxx。6.设xxxxf1,10,1ln且00f,求xf。7.已知xtgxxf222cossin,10x,求xf。8.若xxf2cossin,且210f,求方程0xf的根。9.求dxxfxfxfxfxf32。10.dxxx1,,max23。第四章不定积分(A层次)31.xxdxcossin解:原式Ctgxtgxtgxddxtgxxlnsec22.dxxx2112解:原式Cxxxdxxxdarcsin1211122223.21xxdx解:原式Cxxdxxx2ln1ln31211131Cxx12ln314.xdxx7sin5sin解:原式xdxxdxdxxx12cos212cos212cos12cos21Cxx12sin2412sin415.dxxxxarctg1解:原式Cxarctgxarctgdxarctgdxxxarctg222126.21xxdx解:dttttttttttdttxxxdxsincossincossincos21cossincossin12令Ctttttttddtcossinln2121cossincossin2121Cxxx21ln21arcsin217.arctgxdxx2解:原式dxxxarctgxxxarctgxd23331131314231313131xxdxxdxarctgxxCxxarctgxx2231ln6161318.dxxlncos解:原式dxxxxxx1lnsinlncosdxxxxlnsinlncosxxdxxxxlnsinlnsinlncosdxxxxxxxlncoslnsinlncos故Cxxxxdxxlnsinlncos21lncos9.dxxxxx3458解:原式dxxxxxdxxx32281dxxdxxdxxxxx13148213123Cxxxxxx1ln31ln4ln821312310.dxxx2831解:原式ttdttgtuuduuxxxd42224284secsec41141141令令dtttdt2cos181cos412Ctt2sin16181Cuuuarctgu221118181Cxxarctgx844188111.xdxx2cos解:原式dxxx22cos1xxdxxdxxxdx2sin41412cos2125xdxxxx2sin412sin41412Cxxxx2cos812sin4141212.dxex3解:令tx3,则3tx,dttdx23原式tdteetdetdttetttt2333222dteteettdeetttttt636322Ceteetttt6632Cxxex2223332313.xxxdxlnlnln解:原式Cxxxdxxxdlnlnlnlnlnlnlnlnlnlnln14.21xedx解:222111111tdtdtttttttteedxxx令Ctttttddttt111ln111112CeexCeeexxxxx111ln111ln15.dxexexx21解:原式11112xxxexdeexdxxxxxxxxedeeexdxeeeex111111Ceeexxxx1lnln1Ceexexxx1ln1616.dxx3sin解:令tx3,则3tx,dttdx23原式tdtdtttcos33sin22ttdtttdttttsin6cos32cos3cos322tdtttttsin6sin6cos32Ctttttcos6sin6cos32Cxxxxx333332cos6sin6cos317.dxxx1arcsin解:令uxsin,则ux2sin,uduudxcossin2原式uduuuucossin2cosuduuuuducoscos2cos2CxxxCuuu2arcsin12sin2cos218.dxxx321ln解:原式22211lnxdxdxxxxxx2222122121ln2222212121lnxxdxxx222221112121lndxxxxxCxxxx22221lnln2121lnCxxxx2221ln21ln21ln19.dxxxxxsin2cos5sin3cos77解:原式dxxxxxxxsin2cos5sin5cos2sin2cos5dxxxxxsin2cos5sin5cos21Cxxxsin2cos5ln20.dxxxx21ln解:原式xdxx11lndxxxxxx1111lndxxxxx11lnCxxxxln1ln21.xdxx35cossin解:原式xdxxxcoscossin25xdxxsinsin1sin25Cxx86sin81sin6122.dxxxtgxsincosln解:原式tgxdtgxtgxdxxtgxtgxlncosln2Ctgxtgxtgxd2ln21lnln23.dxxx2arccos2110解:原式xdxarccos21021arccos2CCxxararccos2cos21010ln211010ln12124.arctgxdxx2解:原式331xarctgxd8dxxxarctgxx2331131dxxxxxarctgxx23313131231313131xxdxxdxarctgxxCxxarctgxx2231ln61613125.dxxxx1122解:令tx1,dttdx21原式dttttt222111111dttttdtdttt2221111Ctt21arcsinCxxx11arcsin226.dxxax222解:令atgtx,tdtadx2sec原式dttattgata222secsecdtttttttdtcossincossincossin2222dttttdt2sincossecCttgttsin1seclnCxxaaxaxa2222lnCxaxax2222ln927.dxtgxex221解:原式dxtgxxex2sec22tgxdxexdxexx2222sectgxdxedtgxexx222dxtgxedxetgxtgxexxx22222Ctgxex228.321xxxxdx解:原式3312421xdxxdxxdxCxxx1ln3ln32ln421Cxxx34312ln2129.xxdxsincos2解:令txtg2,则arctgtx2,212tdtdx,212sinttx,2211costtx,于是原式dtttt3122dtttt313322dttttd131333122Ctt3ln313Cxtgxtg232ln31330.dxxxxxex23sincossincos。10解:原式xdxtgxexdxxexxseccossinsinxdexdxexxsecsinsinsinxxxexdxxdesinsinsinsecsecxdxxexedxexexxxxcossecsecsinsins
本文标题:不定积分习题及答案
链接地址:https://www.777doc.com/doc-3947148 .html