您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 电子设计/PCB > 车架总成(半承载)设计规范
扬州亚星客车有限公司企业标准Q/WCYGQ/WCYG—**—20**代替Q/WCYG—**—20**车架总成(全承载)设计规范××××-××-××发布××××-××-××实施扬州亚星客车股份有限公司发布前言本标准是根据国家有关客车方面的法规、标准等要求,结合我公司产品开发流程,并参考高等院校汽车专业教材相关章节制定而成,作为扬州亚星客车股份有限公司车架总成(半承载)设计的主要依据。本标准由扬州亚星客车股份有限公司提出并归口。本标准由扬州亚星客车股份有限公司汽车研究院起草。本标准主要起草人:本标准由扬州亚星客车股份有限公司汽车研究院负责解释。前言的内容可包括:(宋体,五号,段落1.5倍行距)a)任务来源;b)制定过程及征求意见情况;c)指明该标准采用国际标准、国外先进标准的程度;d)该标准导致废止或代替其他标准文件的全部或一部分的说明;e)实施该标准过渡期的要求;f)哪些附录是标准的附录,哪些附录是提示的附录的说明;g)附加说明:——本标准由汽车研究院提出。——本标准由汽车研究院归口。——本标准起草部门。——本标准主要起草人。——本标准首次发布、历次修改和复审确认年、月车架(半承载)总成设计规范1范围本标准规定了半承载式车架总成的术语和定义、设计规范、车架的制造工艺及材料、车架防腐蚀要求、车辆VIN码和产品标牌在车架上的固定(位置)、车架总成的变动、设计评审要求、设计输出图样和文件的明细等基本设计准则。本标准适用于半承载车架总成设计过程控制,外购底盘车架改制可参照执行。本标准不适用于全承载车架总成设计过程控制。2规范性引用文件下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB7258-2012机动车运行安全技术条件GB1184-80形状和位置公差GB3323-87钢熔化焊对接接头射线照相焊缝质量分级Q/WCYGZTCQYG25-2012《外购零部件防腐蚀要求》3术语和定义下列术语和定义适用本文件。车架:汽车承载的基体,支撑着发动机、离合器、变速器、转向器、非承载式(或半承载式)车身等所有簧上质量的有关机件,承受着传给它的各种力和力矩。纵梁:车架总成中主要承载元件,也是车架中最大的加工件,其形状应力求简单。纵梁沿全长方向多取平直且断面不变或少变,以简化工艺。有时也采取中间断面高、两边较低来保证纵梁各断面应力接近横梁:横梁将左右纵梁连在一起,构成完整的车架总成,保证车架有足够的扭转刚度,限制其变形和降低某些部位的应力。有的横梁还作为发动机、散热器、传动轴以及悬架系统的紧固点。4设计规范4.1车架的结构型式半承载式汽车,其前后悬架装置,发动机及变速器等传动系部件施加的作用力均由车架承受,所以,车架总成的刚性、强度及振动特性等几乎完全决定了车辆整体的强度、刚性和振动特性。设计时在确保车架总成性能的同时,还应对车辆性能和匹配性进行认真的研究。根据纵梁的特点,半承载客车车架主要可分为以下几种型式(见图4.1)。a)b)c)图4.1半承载客车车架主要型式a)直通纵梁式车架结构;b)中段桁架式车架结构;c)分段式车架结构;4.1.1直通纵梁式车架结构见图4.1a)该型式车架纵梁可为槽型或Z字型的直通大梁,横梁一般为槽型,有时也可采用其它特殊形状,如帽形或管形等等,纵梁与横梁之间联接一般采用过渡板铆、焊结构。与车身联接的外横梁(也称牛腿)有槽型和异型钢管式。4.1.2中段桁架式车架结构见图4.1b)该型式车架中段一般为矩形管的格栅式结构,前后段车架纵梁、横梁的形状一般为槽型,中段与前、后段之间联接一般采用过渡板铆、焊结构。c)该型式车架纵梁为分段式,纵梁、横梁的形状一般为槽型、矩形管等形状不一,一般根据车辆用途、安装不同总成的需要来进行自然分段铆、焊接。4.1.4三种结构特点分析对比见表1表1三种结构特点分析对比对比项目车架类别不同类别的客车采用的形式车架结构特点制造难易通用化系列化高低防腐处理繁简生产效率高底焊接量大小结构尺寸保证难易一次性投资高低行李仓容量大小实现低地板的可能性整车的质心高低直通纵梁式车架团体客车、前置客车结构简单较易较高简单高小易高小小较高中段桁架式车架公路、旅游客车、团体客车结构较复杂较难高较繁杂较低大难低大无高组合式车架城市客车结构复杂较难高繁杂较高中较难低小大低4.2车架受力及其应力分析车架受力状态极为复杂。汽车静止时,它在悬架系统的支撑下,承受着汽车各部件及载荷的重力,引起纵梁的弯曲和偏心扭转(局部扭转)。如汽车所处的路面不平,车架还将呈现整体扭转。汽车行驶时,载荷和汽车各部件的自身质量及其工作载荷(如驱动力、制动力和转向力等)将使车架各部位承受着不同方向、不同程度和随机变化的动载荷,车架的弯曲、偏心扭转和整体扭转将更严重,同时还会出现侧弯、菱形倾向以及扭转振动及噪声。有时,某些专用汽车的装置件还可能使车架产生较大的装置载荷。因此,车架应有足够的弯曲刚度,以使装在其上的有关机构之间的相对位置在汽车行驶过程中保持不变并使车身的变形最小;车架也应有足够的强度,以保证其有足够的可靠性与寿命,纵梁等主要零件在使用期内不应有开裂和严重变形。车架的受力变形见图4.2图4.2车架的受力和变形a)纵向弯曲;b)侧向弯曲;c)纵向受力;d)整体扭转;e)局部扭转在以上图示载荷作用下,纵梁将产生以下几种应力。1)弯曲应力。设计时常假定纵梁在某些集中载荷作用下只产生弯曲,可按材料力学的原理采用弯矩差法和力多边形法进行分析。2)局部扭转应力。开口断面纵梁在偏心载荷作用下往往出现较大的局部扭转,在载荷作用处及其邻近的翘曲约束处往往双力矩(B)较大,如图4.3a)和图4.3c)所示,可用薄壁杆件理论加以分析。3)整体扭转应力。车架处于整体扭转时,开口断面梁一般在其翘曲约束较强处出现较大的扇性应力。最好是在产品开发阶段,对车架静应力、刚度、振动模态以至动应力和碰撞安全等进行有限元分析,对其轻量化、使用寿命,以及振动和噪声特性做出初步判断,为缩短产品开发周期创造有利条件。图4.3车架扭转应力a)翘曲约束梁偏心扭转时的双力矩图;b)槽形断面的扇形应力图;c)车架整体扭转时纵梁翼缘应力;4.3车架的刚度根据载荷特征和变形特征,可以定义出多种车架刚度。车架模态分析时常注意其垂直弯曲刚度、整体扭转刚度及整车扭转刚度。有时还要分析纵梁的局部扭转刚度(时常和横梁弯曲刚度结合)及车架水平弯曲刚度。车架的各种刚度,因结构不同,有的相差极大。例如常见的由开口断面梁组成的梯形车架,一般其整体扭转刚度极小,而弯曲刚度较大,纵梁局部扭转刚度在横梁处较大,而在横梁之间的部分则较小。至于整车扭转刚度,往往比车架大好几倍。车架刚度不足会引起振动和噪声,也使汽车的乘座舒适性、操纵稳定性及可靠性下降(车架的最大弯曲挠度通常小于10mm),车架刚度又不宜过大,否则将使车架和悬架系统的载荷增大并使汽车轮胎的接地性变差,使通过性变坏。车架整体扭转时,在车架扭转刚度计算中通常以前、后轴的相对扭角为准。汽车行驶时,车架将出现整体扭转状态。如汽车以低速通过路面凸包时,车架的轴间扭角式中:b—道路不平度(以轴间扭角表示);Cj-车架(整体)扭转刚度;Cs-悬架系统(含车轮)角刚度。当sjcc/=1时,α=0.5b,即车架和悬架系统的扭角各为道路扭角的一半。提高车架扭转刚度可相应提高其自振频率。同时也可增大整车的扭转刚度,使α有所减小。其不利影响是,在某些使用条件下,汽车的通过性将下降,车架及悬架系统的载荷也会增大。刚度及悬置跨度较大的装置件如发动机,通常采用四点或三点悬置,通过软垫与车架连接,以减小车架扭转变形的不利影响。改变悬置方式及刚度,往往可以消除某些共振问题。例如:将悬置点设于车架振动模态节点处,可显著减轻振动的传递;将悬置点接近梁的弯曲中心,或在该处设置横梁,则可有效地限制纵梁的局部扭转。设计时应注意加强板、车架纵梁等零件的端部形状和连接方式,以避免刚度突变,导致损坏。如图4。4所示。4.4纵梁4.4.1纵梁型式概述纵梁是车架中主要的承载元件,通常采用低合金钢板冲压而成,其长度大致接近整车长度,其形状应力求简单,一般为槽形,也有的做成Z字形或箱形断面,沿长度方向的变化应小或不变,以简化工艺,图4.5纵梁的形状及其断面根据客车型式的不同和结构布置的要求,纵梁也可以在水平面内或纵向平面内做成弯曲的。为了使材料得到合理利用,可将纵梁设计成等强度的简支梁,其中部截面高度较大,两端逐渐减小。4.4.2纵梁类别及形状:各种纵梁的形状及其断面见图4.5。梯形车架纵梁的上表面应尽可能做成平直的,中部断面一般较大、两端较小,与所受弯矩相适应。也有全长或仅中部及后部为等断面的。根据整车布置要求,有时采用前端或后端或前后端均弯曲的纵梁。槽形断面梁抗弯强度大,工艺性好,零件安装、紧固方便,广泛应用于货车及客车。根据需要也可用Z形断面,多品种生产时,不同轴距、不同装载质量的系列车型采用内高相同的槽形断面纵梁,通过变化钣料厚度或翼缘宽度获得不同强度。为保证通用化优先采用槽形结构,且其截面尺寸、长度应尽可能选用现有模具规格。我公司常用模具规格如下:160X65(mm)、180X65(mm)、200X65(mm)、225x70(mm)、(240X75(mm)、(250X75(mm)等。4.4.3纵梁的强度纵梁受力极为复杂,设计时不仅应注意降低各种应力,改善其分布情况,还应注意使各种应力峰值不出现在同一部位上。例如,纵梁中部弯曲应力较大,则应注意降低其扭转应力,减小应力集中并避免失稳。而在其前、后端,则应着重控制悬架系统引起的局部扭转。提高纵梁强度常用的措施如下:提高弯曲强度1)、选定较大的断面尺寸和合理的断面形状(槽形梁断面高宽比一般为3:1左右);2)、在应力较大部位加加强板;图示4。63)、将受拉翼缘适当加宽。提高局部扭转刚度1)、注意偏心载荷的布置,使相近偏心载荷尽量接近纵梁断面的弯曲中心,使合成量小;2)、在偏心载荷较大处设置横梁,并根据载荷大小及分散情况确定连接强度和宽度;3)、将载荷点尽可能布置在纵梁断面的弯曲中心上;4)、当偏心载荷较大并偏离纵梁较远时,横梁可采用K形横梁或其他加强结构,或将该段纵梁形成封闭断面;5)、偏心载荷较大且较分散时,应采用封闭断面纵梁,横梁间距也应缩小;6)、选用较大的断面;提高整体扭转刚度1)、不使纵梁断面过大,在纵梁大断面处纵、横梁采用立板连接;2)、翼缘连接的横梁不宜相距太远。减小应力集中及疲劳敏感1)、尽可能减小翼缘上的孔(特别是高应力区),严禁在翼缘上布置大孔;2)、对于弯曲纵梁,弯曲部位的圆弧半径不宜过小,以避免变形区出现波纹或严重变薄;3)、注意加强端部的形状和连接,避免刚度突变;4)、杜绝在槽形纵梁的翼缘边缘处施焊;减小失稳1)、在受压翼缘宽度和厚度的比值不宜过大(常在12左右);2)、在容易失稳处加焊撑板;局部强度加强1)、采用较大的板厚;2)、在集中力较大处将纵梁局部贴加强板,必要时再将加强板压肋或折边;3)、加大支架紧固面尺寸,增多紧固件数量,并尽量使力作用点接近纵梁立板的上、下侧。4.5横梁横梁将左、右纵梁联接在一起,构成一个完整的框架,以限制其变形和改善纵梁某些部位的应力,处理纵梁局部扭转问题,关键在于足够的横梁弯曲刚度、合理的连接设计,以及横梁在纵梁上的正确布置。前后钢板弹簧对纵梁的局部扭转载荷较大,因而也是结构设计的重点。其它局部所扭转载荷较小,则较易处理。通常采用的横梁结构和连接情况如图4.7所示。4.5.1横梁的分类(根据其截面形状)槽形截面及大连接板槽形截面沿立板方向弯曲,刚度和强度都较大,多用于板簧支架处。通常都为直梁或弯度不大的梁,以利于制造。槽形截面结构横梁的优点是:可以更加方便连接和接近辅助支架,使其得到一定的支撑,同时亦可布置较多的紧固件,以提高连接强度;板簧支架的载荷可通过连接板直接传到横梁上,连接板对纵梁立板也有加强作用。槽形截面弯曲刚度较大,可使纵梁扭角减至很小;由于两端有连接板加强,横梁可适当减薄
本文标题:车架总成(半承载)设计规范
链接地址:https://www.777doc.com/doc-3967257 .html