您好,欢迎访问三七文档
EconometricInstituteReportNo.9720/AONPURCHASETIMINGMODELSINMARKETINGJ.B.G.FrenkandS.ZhangEconometricInstituteErasmusUniversityRotterdamMay,1997ABSTRACTInthispaperweconsiderstochasticpurchasetimingmodelsusedinmarketingforlow-involvementproductsandshowthatimportantcharacteristicsofthosemodelsareeasytocompute.Assuchthesecalculationsarebasedonanelementaryprobabilisticargumentandcovernotonlythewell-knowncondensednegativebinomialmodelbutalsostochasticpurchasetimingmodelswithotherinterarrivalandmixingdistributions.Keywords:Marketing,purchasetimingmodel.AMSsubjectclassi cation:90A60,60G07.1IntroductionInthispaperweconsiderpurchasetimingmodelsusedwithinthemarketingliterature(cf.[8])andshowbyeasyargumentshowtocomputesomeimportantcharacteristicsofthesemodelsundervariousassumptionsonthemixingdistributionandtheassociated\standard-izedpurchasetimingprocess.AfterintroducingageneralframeworkforthesemodelswediscussapurchasetimingmodelwithanErlang-rmixingdistributionandanarbitrarypointprocessrepresentingthis\standardizedpurchasetimingprocess.Alsoweconsiderapur-chasetimingmodelwithanarbitrarymixingdistributionandanErlang-srenewalprocessasa\standardizedpurchasetimingprocess.Forthelastclassofmodelsitisrelativelyeasytoderiveanalyticalformulasfortheimportantcharacteristicsandtheseformulasgen-eralizemostoftheresultsavailableintheliterature.Atthesametimeweshowthatthemathematicsinvolvedisquiteelementary.2PurchasetimingmodelsLetfXi:i 1gdenoteasequenceofnonnegativerandomvariablesandconsidertheassociatednonexplosiveunivariatepointprocessfN(t):t 0ggivenbyN(t):=supfn 0:Tn tgwithTn,n2N,denotingthesumoftherandomvariablesXi,1 i n,andT0:=0(cf.[2]).ObserveiftherandomvariablesXi,i=1;:::,areindependentandidenticallydistributedwithdistributionfunctionF(x):=PrfXi xgsatisfyingF(0)=0theabovepointprocessrepresentsarenewalprocess(cf.[11]).TomodelthemomentsofpurchasetimingofacustomerselectedatrandomfromapopulationitisassumedthattheinterpurchasetimesofthisrandomcustomeraregivenbyXi=Y,i2N,withYanonnegativerandomvariablewithdistributionG(y):=PrfY yg.Thisdistributioniscontinuouson(0;1)andsatis es0 G(0)1andG(1)=1.Moreover,therandomvariableYrepresentingthepurchaserateparameter(cf.[8])isindependentofthesequenceXi,i 1.WithinthetheoryofconsumerbehaviorthedistributionGiscalledthemixingdistributionandthisdistributionenablesustoaggregateoverthewholepopulationofcustomers.ObservealsothatinmostoftheliteratureonconsumerbehaviortheunivariatepointprocessfN(t):t 0gisactuallyarenewalprocesswitheitheranexponentialorErlang-2interarrivaldistribution.IntroducingnowthestochasticprocessfBt:t 0ggivenbyBt:=thenumberofpurchasesofarandomcustomeruptotimet1itfollowsbytheaboveconstructionthatBt=N(Yt).Awell-knownmodelbelongingtothisclassisgivenbytheNegativeBinomialmodel(NBD)(cf.[8,5,9]).InthismodelitisassumedthatthemixingdistributionisaGammadistributionandtheassociatedpointprocessisaPoissonprocesswitharrivalrate1.FromatheoreticalpointofviewimportantcharacteristicsoftherandomvariableBtareitsdistribution,its rstmomentandgeneratingfunction.TocomputethedistributionofBtweobserve,sincetheeventfN(t) kg,k2N,coincideswiththeeventfTk tg,thatPrfBt kg=PrfN(Yt) kg=PrfTk Ytg=PrfY Tkt 1g:SinceGiscontinuouson(0;1)andTkisstrictlypositivewithprobabilityoneweobtainthatPrfBt kg=PrfYTkt 1g=1 EG(Tkt 1)(2.1)withEdenotingtheexpectation.Ifithappensthattheconsideredpopulationconsistsofmdi erentclasseseachcharacterizedbyadi erentrandompurchaserateparameterYi;i=1;:::;m,themixingdistributionGcanbeseenasamixtureofdistributions.Thismeansthatthereexistpositivenumbersp1;:::;pmaddingupto1withpirepresentingtherelativesizeofclassiwithinthepopulationandeachrandomcustomerbelongingtoclassihasarandompurchaserateparameterYiwithdistributionGi.HenceinthiscasethemixingdistributionGisgivenbyG(y)=mXi=1piGi(y)orequivalentlyGisthedistributionoftherandomvariableYIwhereIdenotesarandomvariablewithPrfI=ig=pi,i=1;:::;mandIisindependentoftherandomvariablesY1;:::;Ym.By(2.1)wenowobtainthatPrfBt kg=PrfN(YIt) kg=mXi=1piPrfN(Yit) kg=mXi=1piPrfB(i)t kg(2.2)withB(i)tdenotingthenumberofpurchasesuptotimetofacustomerselectedatrandomfromclassi.Aspecialcaseisgivenbytheexistenceofazeroandanonzero-classwithinthepopulationandby(2.2)thisimpliesthatPrfBt kg=(1 p1)PrfB(2)t kg+p1 0(k)with 0(k)=1fork=0andzerootherwiseandB(2)tdenotingthenumberofpurchasesuptotimetofacustomerselectedatrandomfromthenon-zeroclass.Fromatheoreticalpointofviewthereseemstobenopreferenceforaspeci cmixingdistributionandso2theselectionofsuchadistributionispurelydeterminedbythe exibilityofthefamilyofdistributionstowhichthismixingdistributionbelongs.SincethefamilyofGammadistributionswithscaleparameter 0andshapeparameter 0seemstobe exibleenoughtheGammadistributionischoseninmostoftheliterature(forexamplesee[14,3])asamixingdistribution.Iftheshapeparameter isanintegerrthecorrespondingGammadistributioniscalledanErlang-rdistributionandinthiscasethecorrespondingrandomvariableYcanberepresentedasthesumofrindependentandexponentiallydistributedrandomvariablesYi,i=1;:::;r,withthesamescaleparamet
本文标题:Econometric Institute Report No. 9720A ON PURCHASE
链接地址:https://www.777doc.com/doc-3969305 .html