您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 1.1.平面直角坐标系,伸缩变换
新课标人教版课件系列《高中数学》选修4-41.1.1《平面直角坐标系》(1)学会用坐标法来解决几何问题。(2)能用变换的观点来观察图形之间的因果联系,知道图形之间是可以类与类变换的。(3)掌握变换公式,能求变换前后的图形或变换公式。教学目标教学重点:应用坐标法的思想及掌握变换公式。教学难点:掌握坐标法的解题步骤与应用,总结体会伸缩变换公式的应用。通过典型习题的讲解、剖析,及设置相关问题引导学生思考来突破难点。一.平面直角坐标系的建立思考:声响定位问题某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s,已知各观测点到中心的距离都是1020m,试确定该巨响的位置。(假定当时声音传播的速度为340m/s,各相关点均在同一平面上)yxBACPo以接报中心为原点O,以BA方向为x轴,建立直角坐标系.设A、B、C分别是西、东、北观测点,设P(x,y)为巨响为生点,由B、C同时听到巨响声,得|PC|=|PB|,故P在BC的垂直平分线PO上,PO的方程为y=-x,因A点比B点晚4s听到爆炸声,yxBACPo则A(1020,0),B(-1020,0),C(0,1020)故|PA|-|PB|=340×4=1360由双曲线定义知P点在以A、B为焦点的双曲线上,12222byax)0(13405680340568010201020,6802222222222xyxacbca故双曲线方程为10680),5680,5680(,5680,5680POPyx故即答:巨响发生在接报中心的西偏北450距中心处.m10680用y=-x代入上式,得,∵|PA||PB|,5680x解决此类应用题的关键:1、建立平面直角坐标系2、设点(点与坐标的对应)3、列式(方程与坐标的对应)4、化简5、说明坐标法例1.已知△ABC的三边a,b,c满足b2+c2=5a2,BE,CF分别为边AC,CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。(A)FBCEOyx以△ABC的顶点A为原点O,边AB所在的直线x轴,建立直角坐标系,由已知,点A、B、F的坐标分别为解:A(0,0),B(c,0),F(,0).2cC设点的坐标为,则点E的坐标为xy(x,y)(,)22.2222225||||5||bcaACABBC由,可得到,222225[()].xycxcy即22222250.xyccx整理得(,),(,),222xycBEcCFxy因为2()()0.222xcyBECFcx所以因此,BE与CF互相垂直.建系时,根据几何特点选择适当的直角坐标系。(1)如果图形有对称中心,可以选对称中心为坐标原点;(2)如果图形有对称轴,可以选择对称轴为坐标轴;(3)使图形上的特殊点尽可能多的在坐标轴上。具体解答过程见书本P4你能建立不同的直角坐标系解决这个问题吗?比较不同的直角坐标系下解决问题的过程,建立直角坐标系应注意什么问题?xO2y=sinxy=sin2x二.平面直角坐标系中的伸缩变换思考:(1)怎样由正弦曲线y=sinx得到曲线y=sin2x?在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的,就得到正弦曲线y=sin2x.12通常把叫做平面直角坐标系中的一个压缩变换。1坐标对应关系为:112xxyy上述的变换实质上就是一个坐标的压缩变换,即:设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横坐标x缩为原来,得到点12,pxy(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。O2y=sinxy=3sinxyx在正弦曲线上任取一点P(x,y),保持横坐标x不变,将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。通常把叫做平面直角坐标系中的一个坐标伸长变换。223xxyy设点P(x,y)经变换得到点为,pxy(3)怎样由正弦曲线y=sinx得到曲线y=3sin2x?写出其坐标变换。O2y=sinxy=3sin2xyx在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的,在此基础上,将纵坐标变为原来的3倍,就得到正弦曲线y=3sin2x.12设点P(x,y)经变换得到点为通常把叫做平面直角坐标系中的一个坐标伸缩变换。3(3)怎样由正弦曲线y=sinx得到曲线y=3sin2x?写出其坐标变换。3123xxyy定义:设P(x,y)是平面直角坐标系中任意一点,在变换'(0):'(0)xxyy的作用下,点P(x,y)对应称为平面直角坐标系中的伸缩变换。4注(1)(2)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;(3)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。0,0,pxy例2:在直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。(1)2x+3y=0;(2)x2+y2=1213xxyy解:由伸缩变换代入2x+3y=01213xxyy得得x+y=023xxyy22代入x+y=1得2249xy+=11222133xxxxyyyy由伸缩变换得1.在同一直角坐标系下,求满足下列图形的伸缩变换:曲线4x2+9y2=36变为曲线0xxyy1解:设伸缩变换,22代入x+y=1得22221xy224936xy又1312则1312xxyy得221xy2.在同一直角坐标系下经过伸缩变换后,曲线C变为,求曲线C的方程并画出图形。3xxyy2299xy22得9x-9y=922即x-y=122x-9y=93xxyy2.解:将代入3将曲线C经过伸缩变换x′=2xy′=13y后对应图形的方程为x2-y2=1,则曲线C的焦点坐标为________.解析:由条件知点(2x,13y)在曲线x2-y2=1上,∴4x2-y29=1,∵a2=14,b2=9,∴c2=a2+b2=374,∴c=372,∴焦点坐标为(±372,0).4.设平面上的伸缩变换的坐标表达式为x′=12x,y′=3y,则在这一坐标变换下正弦曲线y=sinx的方程变为________.解析:∵x′=12x,y′=3y,∴x=2x′,y=13y′.代入y=sinx得y′=3sin2x′.答案:y′=3sin2x′课堂小结:(1)体会坐标法的思想,应用坐标法解决几何问题;(2)掌握平面直角坐标系中的伸缩变换。
本文标题:1.1.平面直角坐标系,伸缩变换
链接地址:https://www.777doc.com/doc-3981205 .html