您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 平面与平面垂直的判定
两直线所成角的取值范围:AB1O平面的斜线和平面所成的角的取值范围:直线和平面所成角的取值范围:复习回顾1平面的斜线和平面所成的角的取值范围:(0o,90o).两直线所成角的取值范围:[0o,90o].ABO直线和平面所成角的取值范围:[0o,90o].复习回顾1.在平面几何中角是怎样定义的?从一点出发的两条射线所组成的图形叫做角。或:一条射线绕其端点旋转而成的图形叫做角。2.在立体几何中,异面直线所成的角是怎样定义的?直线a、b是异面直线,经过空间任意一点O,分别引直线a'//a,b'//b,我们把相交直线a'和b'所成的锐角(或直角)叫做异面直线所成的角。3.在立体几何中,直线和平面所成的角是怎样定义的?平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角。问题:异面直线所成的角、直线和平面所成的角有什么共同的特征?结论:它们的共同特征都是将三维空间的角转化为二维空间的角,即平面角。二面角1.半平面的定义平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面.半平面半平面新课2.二面角的定义从一条直线出发的两个半平面所组成的图形叫做二面角,棱为l,两个面分别为、的二面角记为-l-.l这条直线叫做二面角的棱,每个半平面叫做二面角的面.⑴平卧式:⑵直立式:ABABllABl3.画二面角在二面角-l-的棱l上任取一点O,如图,在半平面和内,从点O分别作垂直于棱l的射线OA、OB,射线OA、OB组成∠AOB.怎样度量二面角的大小?能否转化为两相交直线所成的角?4.二面角的大小lOBAOBA∠AOB的大小一定.一个平面垂直于二面角-l-的棱l,且与两个半平面的交线分别是射线OA、OB,O为垂足,则∠AOB叫做二面角-l-的平面角.4.二面角的大小lOBAOBA二面角的大小可以用它的平面角来度量.即二面角的平面角是多少度,就说这个二面角是多少度.二面角的范围:①二面角的两个面重合:②二面角的两个面合成一个平面:4.二面角的大小③平面角是直角的二面角叫直二面角.0o;180o;[0o,180o].(1)定义法根据定义作出来(2)垂面法作与棱垂直的平面与两半平面的交线得到lABOlOABAOlD(3)垂线法5.二面角的平面角的作法1、定义法根据定义作出来2、垂面法作与棱垂直的平面与两半平面的交线得到lPABO3、垂线法在正方体ABCD-A’B’C’D’中,找出下列二面角的平面角:(1)二面角D’-AB-D和A’-AB-D;(2)二面角C’-BD-C和C’-BD-A.BACDA’B’C’D’寻找二面角的平面角在正方体ABCD-A’B’C’D’中,找出下列二面角的平面角:(1)二面角D’-AB-D和A’-AB-D;(2)二面角C’-BD-C和C’-BD-A.BACDA’B’C’D’寻找二面角的平面角在正方体ABCD-A’B’C’D’中,找出下列二面角的平面角:(1)二面角D’-AB-D和A’-AB-D;(2)二面角C’-BD-C和C’-BD-A.BACDA’B’C’D’寻找二面角的平面角O例1已知空间四边形ABCD的四条边和对角线都相等,求平面ACD和平面BCD所成二面角的大小.练习:如图,已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=,BC=2,求以BC为棱,以面BCD与面BCA为面的二面角的大小?3DAECB6.平面与平面垂直两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面与垂直,记作⊥.两个平面垂直的判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.已知:AB⊥β,AB⊂α(图1).求证:α⊥β。[证明]:设α∩β=CD,∵AB⊥β,CD⊂β,∴AB⊥CD.在平面β内过点B作直线BE⊥CD,则∠ABE是二面角α-CD-β的平面角,而AB⊥BE,故α-CD-β是直二面角.∴α⊥β。课堂练习:1.如果平面α内有一条直线垂直于平面β内的一条直线,则α⊥β.()3.如果平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥β.()一、判断:××4.若m⊥α,mβ,则α⊥β.()√2.如果平面α内有一条直线垂直于平面β内的两条直线,则α⊥β.()√1.过平面α的一条垂线可作_____个平面与平面α垂直.2.过一点可作____个平面与已知平面垂直.二、填空题:3.过平面α的一条斜线,可作____个平面与平面α垂直.4.过平面α的一条平行线可作____个平面与α垂直.一无数无数一例1如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的任意一点,求证:平面PAC⊥平面PBC.PABOCABCDA1B1C1D1例2:在正方体ABCD-A1B1C1D1中,求证:.111ACCAABD平面平面练习:ABCD是正方形,O是正方形的中心,PO⊥平面ABCD,E是PC的中点,求证:(1)PA//平面BDE;(2)平面PAC⊥平面BDE.POABCDE练习:教材P.69探究(1)四个面的形状怎样?(2)有哪些直线与平面垂直?(3)任意两个平面所成的二面角的平面角如何确定?ABCD
本文标题:平面与平面垂直的判定
链接地址:https://www.777doc.com/doc-3996278 .html