您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 液压飞行模拟转台机械结构设计
1液压飞行模拟转台机械结构设计1.绪论1.1选题的依据及意义随着飞机和导弹的快速发展,要求其具有更高的性能和稳定性,这就要我们通过对他们的性能参数进行测量评估进而进行改进,但一架真正的飞机或一枚导弹的成本太高,我们不可能也没有必要用一架真正的飞机或导弹来进行实验采集数据,这就要求我们采用一些比较合理的实验装置来实现飞机或导弹的飞行状态,这样飞行模拟实验转台得以发展。该转台可以将重物放在其上面也可以用来对飞行员进行培训,因为它可以模拟飞机在空中飞行的各种姿态。该装置的出现既达到了对飞机或导弹性能参数的采集,进而改进,在成本上远远低于一架飞机或导弹的价格,对飞机和导弹的发展具有不可估量的价值。1.2国内外研究概况及发展趋势目前,大部分飞行模拟转台采用串联式机构,而本设计则采用并联式机械机构来实现的。采用并联机构其承载能力大,机构简单。本机构由上下两个工作平台,下平台固定在地面上,上平台用来放待实验的物品,在上下平台之间采用三个液压缸连接,通过液压缸上声高度的不同,来实现上平台的倾斜,而上平台可由电动机带动旋转从而达到模拟飞机在飞行过程中的各种状态。飞行模拟器研制及应用被认为是飞行模拟技术发展的基础性工程和关键环节,一直受到世界各国尤其是发达国家的高度重视。美国是世界上最早开展飞行模拟器研究和应用的国家,在技术和数量上一直居领先地位。据统计,美国的飞行模拟器研制和采办费用每年增长一倍,仅1995年~2000年的费用就高达36亿美元。俄罗斯同样是世界上的飞行模拟大国和强国,他们的所有飞机都配备有相应的飞行模拟器,仅空中飞行模拟器就有20余种,其中包括先进的空地综合飞行模拟系统。值得提出的是,俄罗斯在飞行模拟器的基础理论研究,特别是人-机工效学和飞行员建模与仿真等方面都名列前茅。英、德、法等国的飞行模拟器研制及应用也始终处于世界先进行列。我国在飞行模拟器研制及应用方面虽然起步比美、俄、英法等国较晚,但仍是世界上发展飞行模拟器较早的国家。于20世纪60年代开始使用射击练习器和仪表飞行练习器,并建立了研究用飞机控制系统模拟试验台、航空发动机模拟试验台。20世纪80年代发展更快,先后研制成功了一系列研制用飞行模拟器和工程用飞行模拟器,并普及设计、制造和使用了各个机种的飞行模拟训练器。出此,我国还是世界上少数能够设计和建造空中飞行模拟器的国家之一,所以可堪称为“飞行模拟器大国”。[1]22.机械结构与液压传动系统设计该液压飞行模拟实验转台由升降系统、传动系统和控制系统三部分组成,可以通过升降系统来实现上工作平台的倾斜角度、通过传动系统来实现上工作平台的旋转,从而达到模拟飞机或导弹在空中飞行时的各种姿态,而控制系统则用来控制升降系统中各个液压缸上升的高度和传动系统中的电动机的转速从而达到工作平台要求的工作角度和旋转速度。升降系统有液压式、气电式、气压式、汽液两用式等,考虑到成本、实用性、使用舒适度等因素,我们最终选用了技术比较成熟的液压系统。传动系统有齿轮传动、蜗轮蜗杆传动、螺纹传动、带轮传动,考虑到有冲击则采用带轮传动,同时采用离合器从而减少对电动机的惯性冲击。控制系统可以是微机、单片机、可编程控制器等,考虑到本次设计的飞行模拟实验转台仅有3个液压缸和一个电动机,控制器需要进行的运算量不大,而且本系统提供的功能并不复杂,单片机MCS-51足以。所以从节省成本的角度出发选择了单片机控制系统。该液压飞行模拟实验转台机械结构如图2-1所示。2.1升降系统结构分析升降系统有液压式、气电式、汽液两用式等,考虑到成本、实用性、使用舒适度等因素,我们最终选用了技术比较成熟的液压系统。该升降系统由三个液压缸组成。我们所设计的液压飞行模拟转台的主要参数是总高约1500mm,最大行程为400mm,最大载荷为1t。因液压飞行模拟转台载荷较大,位置精度要求较高,故上升速度不宜过大,最大上升速度应控制在50mm/min以内。2.1.1液压缸结构由于液压缸的外形尺寸较大,需承受的较大的冲击载荷,所以初步拟定采用了法兰型液压缸的结构原型,并在此基础上针对液压缸的使用特性进行调整其总体结构如图2-2所示。为了实现工作平台的倾斜角度,液压缸的工作台与活塞杆应采用转动连接副相连。当液压缸工作时,液压缸的工作台自由转动,所以设计时将活塞杆顶部插入球头,与工作台形成转动副。如图2-3所示。球头与活塞杆采用紧固螺钉固定。由于光栅尺尺寸较长,只能将活塞和活塞杆做成中空状来放置光栅传感器。这样活塞与活塞杆之间不宜采用螺母紧固,方便起见,我们将活塞和活塞杆合为一体,材料同为45号钢。工作时发光元件与光敏元件随活塞作同步运动,光栅尺下端固定在底盖上不动,光源与光栅尺的相对位移量通过读数头转化为数字信号传递给单片机。34图2-2液压缸总体结构图图2-3液压缸的工作台与活塞之间的连接由于液压缸的行程较长,达400mm,当工作台旋转一个角度去承载重物时容易产生较大的弯曲力矩使活塞杆折断。所以有必要设计一个支撑套进行保护。支撑套与油缸壁之间采用通孔螺钉紧固。5由于光栅传感器放在液压缸内部,考虑到其信号线的连接问题,我们将油缸底盖与液压缸底座之间留有一定空间。为了方便装卸,不宜将底盖与油缸焊接。经过多方面的考虑,比较了多种方案后,采用了如图2-4所示的方法固定底盖。图2-4中液压缸底座处转有4个螺纹孔,用4个型号为M16x44的六角头螺栓将底盖顶起至油缸卡槽处。螺杆长度比实际所需的长3~5mm,可通过增加垫片的方法达到使4个螺栓平均分配载荷的目的。底盖上套有密封圈,防止漏油。液压缸底座与油缸通过4个内六角螺钉紧固。在底座和油缸两侧各开一个通孔用于连接光栅传感器的信号线。2.1.2液压缸零部件分析由于液压缸可能会在比较恶劣的条件下使用,而且在装载和卸载重物时,可能会因操作不当而对千斤顶底座造成较大冲击,导致整个系统遭到破坏。所以底座采用具有较高强度和韧性的球墨铸铁QT600-3。图2-4液压缸底盖的固定方式油缸是液压系统的主要零件,它与底座、底盖、油口、导向套等零件构成密封的容器,用于容纳压力油液,同时还是活塞的运动轨道。所以设计油缸时,应该正确的确定各部分的尺寸,保证液压缸有足够的输出力、运动速度和有效行程,同时还必须具有一定的强度,能足以承受液压力、负载力和意外的冲击力;缸筒的内表面应具有合适的公差等级、表面粗糙度和形位公差等级,以保证液压缸的密封性、运动平稳性6和耐用性。对油缸材料的可选空间很大,对其进行筛选需要有足够的耐心。对油缸的要求:1.要有足够的强度,能长期承受最高工作压力及短期动态压力而不致产生永久变形;2.要有足够的刚度,能承受活塞侧向力和安装时的反作用力而不致产生弯曲;3.内表面与活塞密封件及导向套的摩擦作用下,能长期工作而磨损很少,尺寸公差等级和形位公差等级足以保证活塞密封件的密封性;4.最好还需要有良好的可焊性,以防在需要焊接的时候不致产生裂纹或过大变形。[4]最后我们选定各方面性能良好的45号钢。油缸毛坯普遍采用退火的冷拔或热轧无缝钢管,现在国内市场上已有内孔经珩磨或内孔精加工的无缝钢管卖,只需按所要求的长度切割即可。本次设计虽然活塞与活塞杆采用了一体式设计,采用相同的材料,但对他们的工艺要求很不相同,所以分开来介绍。由于活塞在液体压力的作用下沿缸筒往复滑动,因此,它与缸筒的配合应适当,既不能过紧,也不能间隙过大。配合过紧,不仅使最低启动压力增大,降低机械效率,而且容易损坏缸筒和活塞的滑动配合表面;间隙过大,会引起液压缸内部泄露,降低容积效率,使液压缸达不到要求的设计性能。活塞材料我们选用的是45号钢。活塞外径的配合一般采用f9的公差等级,外径对内孔的同轴度公差不大于0.02mm,端面与轴线的垂直度公差不大于0.04mm/100mm,外表面的圆度和圆柱度一般不大于外径公差之半,内孔的工作表面粗糙度Ra值选用0.16μm。活塞杆要在导向套中滑动,一般采用H8/f7的配合。太紧了,摩擦力大,太松了,容易引起卡滞现象和单边磨损。其圆度和圆柱度公差不大于直径公差之半。安装活塞的轴径与外圆的同轴度公差不大于0.01mm,是为了保证活塞缸外圆与活塞外圆的同轴度,以避免活塞与缸筒、活塞杆与导向套的卡滞现象。安装活塞的轴肩端面与活塞杆轴线的垂直度公差不大于0.04mm/100mm,以保证活塞安装不产生歪斜。活塞杆的外圆粗糙度Ra值取0.16μm。太光滑了,表面无法形成油膜,反而不利于润滑。为了提高耐磨性和防锈性,活塞杆表面需进行镀铬处理,镀层厚0.03~0.05mm,并进行抛光或磨削加工。活塞杆导向套装在缸筒和支撑套的内侧,被限制在缸筒和支撑套的卡槽之内,但不固定死。用以对活塞杆进行导向,内装有密封装置以保证缸筒的密封。上方装有防尘圈,以防止活塞杆在后退时把杂质、灰尘及水分带到密封装置处,损坏密封装置。如图2-5所示:导向套的材料我们选用的是摩擦系数较小、耐磨性好的青铜ZQSn-1。导向套外7圆与缸筒内孔工作表面的配合多为H8/f7,内孔与活塞杆外圆的配合也可采用H8/f7。外圆与内孔的同轴度公差不大于0.03mm,圆度和圆柱度公差0.05mm。本次设计中所有的密封装置都采用的是O型密封圈。O型密封圈在往复运动过程中,除了自密封作用外,由于压力的作用和液体分子与金属表面相互作用的结果,又业中所含的“极性分子”便在金属便表面形成一个坚固的边界层油膜,且对轴产生很大的附着力。该油膜始终存在于密封件与往复运动轴之间,从泄露的角度看,这是有害的,长时间的使用后会造成油液的泄露;但它对运动密封面的再润滑却起到异常重要的作用。所用材料是橡胶。符合GB3452.1-82的标准。[4]图2-5导向套的设计液压缸底座与油缸之间的连接、光栅尺密封层与活塞之间的连接还有支撑套与油缸壁之间的连接件采用的都是沉头内六角螺钉。符合GB70-85的标准。工作台与盖板之间的连接和对油缸底盖的顶升都采用了六角头螺栓,并符合GB5783-86的标准。2.1.3油缸的壁厚校验油缸的额定压力Pn应低于一定极限:21221snD)D-D(σ35.0≤P………………………………………………………(2-1)[4]式中:Pn-额定工作压力;D1-油缸外径,本次为116mm;D-油缸内径,本次为86mm;8σS-油缸材料屈服强度。油缸的材料为45号钢,查表可得σS=360MPa;由此可知上式右边=50.745MPa液压缸最大工作载荷为1t,面积为4757.1mm2MP745.50≤MP102.2)D-D(πw4swPaa221maxmaxn===…………………………(2-2)[4]其中:Wmax为最大工作载荷,本次为10000N。经校验,油缸壁所受压力在许可范围之内。2.2传动系统结构分析与计算传动系统是由电动机提供动力,为了防止在启动和关闭是电动机受到冲击,在电动机与轴连接处采用离合器,然后通过皮带轮将动力传到工作台带动工作台旋转,从而达到模拟飞行的转动。由于工作时平台上将放重物为了减少轴承所承受的稠向力,所以在工作台下用滚球与支撑台接触,既减少了对轴承的力而且采用滚珠是滚动摩檫使得摩檫力不是很大从而所需要的转距不大。该系统由电动机、离合器、皮带轮以及轴和轴承组成。其结构图如图2-6所示。图2-6传动机构图2.2.1电动机的选择电动机是已经系列化了的标准产品。在设计中,主要根据所需电动机的输出功率、9工作条件及经济要求,从产品目录中选择其类型、结构形式、容量(功率)和转速、并确定其型号。(1)电动机类型的选择因为三相交流异步电动机(特别是鼠笼式感应电动机)具有结构简单,工作可靠,价格便宜和维护方便等优点,所以应用广泛。尤其在中小功率,无须调速而又长期带动稳定或变动载荷的设备中用得较多。在选择电动机的类型时,主要考虑的是:静载荷或惯性载荷的大小,工作机械长期连续工作还是重复短时工作,工作环境是否多灰尘或水土飞溅等方面。对于一般用途,无特殊要求的工作机械(如机床,鼓风机,水泵等)通常选用J2或JO2型电动机。对于灰尘较多或水土飞溅的地方(如磨粉机,碾米机,农用机械,矿山机械等)则必须选用JO2型封闭自冷式电动机。对于起动载荷或惯
本文标题:液压飞行模拟转台机械结构设计
链接地址:https://www.777doc.com/doc-4027430 .html