您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 勾股定理的证明(比较全的证明方法)
325242在中国古代,人们把弯曲成直角的手臂的上半部分称为勾,下半部分称为股。我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.勾股勾股定理的由来这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。“什么是”勾、股“呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作商高定理。毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为“毕达哥拉斯定理”,以后就流传开了。(为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.)走进数学史走进数学史两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.因此不断出现关于勾股定理的新证法.1.传说中毕达哥拉斯的证法2.赵爽弦图的证法4.美国第20任总统茄菲尔德的证法3.刘徽的证法勾股定理的证明5.其他证法勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。现在在网络上看到较多的是16种,包括前面的6种,还有:返回这棵树漂亮吗?如果在树上挂上几串彩色灯泡,再挂上些小铃铛、小彩球、小礼盒、小的圣诞老人,是不是更像一棵圣诞树.也许有人会问:“它与勾股定理有什么关系吗?”仔细看看,你会发现,奥妙在树干和树枝上,整棵树都是由下方的这个基本图形组成的:一个直角三角形以及分别以它的每边为一边向外所作的正方形.这个图形有什么作用呢?不要小看它哦!古希腊的数学家毕达哥拉斯就是利用这个图形验证了勾股定理.AB关于勾股定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前300年左右)所著的《几何原本》第一卷中的命题47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和”.其证明是用面积来进行的.传说中毕达哥拉斯的证法已知:如图,以在Rt△ABC中,∠ACB=90°,分别以a、b、c为边向外作正方形.求证:a2+b2=c2.cbaDEHKFGBAC数学故事链接相传两千五百年前,一次毕达哥拉斯去朋友家作客,发现朋友家用砖铺成的地面反映直角三角形三边的某种数量关系,同学们,我们也来观察下面的图案,看看你能发现什么?探索勾股定理数学家毕达哥拉斯的发现:A、B、C的面积有什么关系?SA+SB=SCABC探索勾股定理ABCSA=a2SB=b2SC=c2abca2+b2=c2设:直角三角形的三边长分别是a、b、c猜想:两直角边a、b与斜边c之间的关系?SA+SB=SC探索勾股定理返回cbaMNDEHKFGBAC∴S矩形ADNM=2S△ADC.又∵正方形ACHK和△ABK同底(AK)、等高(即平行线AK和BH间的距离),∴S正方形ACHK=2S△ABK.∵AD=AB,AC=AK,∠CAD=∠KAB,∴△ADC≌△ABK.由此可得S矩形ADNM=S正方形ACHK.同理可证S矩形MNEB=S正方形CBFG.∴S矩形ADNM+S矩形MNEB=S正方形ACHK+S正方形CBFG.即S正方形ADEB=S正方形ACHK+S正方形CBFG,也就是a2+b2=c2.传说中毕达哥拉斯的证法证明:从Rt△ABC的三边向外各作一个正方形(如图),作CN⊥DE交AB于M,那么正方形ABED被分成两个矩形.连结CD和KB.返回∵由于矩形ADNM和△ADC同底(AD),等高(即平行线AD和CN间的距离),刘徽在《九章算术》中对勾股定理的证明:勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也.令正方形ABCD为朱方,正方形BEFG为青方.在BG间取一点H,使AH=BG,裁下△ADH,移至△CDI,裁下△HGF,移至△IEF,是为“出入相补,各从其类”,其余不动,则形成弦方正方形DHFI.勾股定理由此得证.刘徽的证法返回IFEABDCGH我国对勾股定理的证明采取的是割补法,最早的形式见于公元三、四世纪赵爽的《勾股圆方图注》.在这篇短文中,赵爽画了一张他所谓的“弦图”,其中每一个直角三角形称为“朱实”,中间的一个正方形称为“中黄实”,以弦为边的大正方形叫“弦实”,所以,如果以a、b、c分别表示勾、股、弦之长,那么:赵爽弦图的证法224()2abcba得:c2=a2+b2.返回cba(b-a)2中黄实朱实学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关于勾股定理的证明方法已有500余种.其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话.总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.事情的经过是这样的:1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味.于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.总统巧证勾股定理美国第二十任总统伽菲尔德总统巧证勾股定理aabbccADCBE返回向常春的证明方法2111()()222ABCDSabbabaab梯形22211()22111222EBCAECDABCDSSScabbcabb四边形梯形2221111122222aabcabb222:abc从而得到注:这一方法是向常春于1994年3月20日构想发现的新法.abcba-bADCBEcccabacbbacba我们用拼图的方法来说明勾股定理是正确的.试一试证明:上面的大正方形的面积为:下面大的正方形的面积为:从右图中我们可以看出,这两个正方形的边长都是a+b,所以面积相等,即bbabaaabccbaab2142cab22142abab222222114422cabcbabcab以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵RtΔHAE≌RtΔEBF,∴∠AHE=∠BEF.∵∠AEH+∠AHE=90º,∴∠AEH+∠BEF=90º.∴∠HEF=180º―90º=90º.∴四边形EFGH是一个边长为c的正方形.它的面积等于c2.∵RtΔGDH≌RtΔHAE,∴∠HGD=∠EHA.∵∠HGD+∠GHD=90º,∴∠EHA+∠GHD=90º.又∵∠GHE=90º,∴∠DHA=90º+90º=180º.∴ABCD是一个边长为a+b的正方形,它的面积等于(a+b)²,∴(a+b)²=4×½ab+c²,∴a²+b²=c²作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180°―90°=90°又∵AB=BE=EG=GA=c,∴ABEG是一个边长为c的正方形.∴∠ABC+∠CBE=90°∵RtΔABC≌RtΔEBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90°即∠CBD=90°又∵∠BDE=90°,∠BCP=90°,BC=BD=a.∴BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则,∴BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2梅文鼎证明再见
本文标题:勾股定理的证明(比较全的证明方法)
链接地址:https://www.777doc.com/doc-4098639 .html