您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 2.3.2平面向量的正交分解及坐标表示(1)
2.3.2平面向量的正交分解及坐标表示复习平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式唯一.λ1,λ2是被a,e1、e2唯一确定的数量。a=λ1e1+λ2e2复习abOAaBb向量夹角已知∠AOB是两个非零向量a,b的夹角(1)∠AOB的取值范围什么?(2)若a,b同向,则∠AOB=?(3)若a,b反向,则∠AOB=?思考:向量a与b的夹角是90°,则称向量a与b垂直,记作a⊥b.思考:互相垂直的两个向量能否作为平面内所有向量的一组基底?ba把一个向量分解为两个互相垂直的向量,叫做把向量正交分解F1F2G正交分解λ2a2aλ1a1练习:如图,向量i、j是两个互相垂直的单位向量,|a|=4,向量a与i的夹角是30°,用向量i、j为基底,表示向量aBAP232aijaiOj我们知道,在平面直角坐标系,每一个点都可用一对有序实数(即它的坐标)表示,对直角坐标平面内的每一个向量,如何表示?在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便。yOxjiaxiyj分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.由平面向量基本定理知,有且只有一对实数x、y,使得a=xi+yj任作一个向量a,把(x,y)叫做向量a的坐标,记作a=(x,y)其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标i=j=0=(1,0)(0,1)(0,0)ayOxxiyjjia=(x,y)yOxajixiyjxiyjb相等的向量坐标相同向量a、b有什么关系?a=b能说出向量b的坐标吗?b=(x,y)yxAa如图,在直角坐标平面内,以原点O为起点作OA=a,则点A的位置由a唯一确定。yxOji设OA=xi+yj,则向量OA的坐标(x,y)就是点A的坐标;a(x,y)因此,在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。反过来,点A的坐标(x,y)也就是向量OA的坐标。练习:在同一直角坐标系内画出下列向量.(1)(1,2)a(2)(1,2)b(1,2)A.xyoaxyo(1,2)B.解:b例.用基底i,j分别表示向量a,b,c,d,并求出它们的坐标.-4-3-2-11234ABij12-2-1Oxyabcd45323(2,3)ABij23(2,3)bij23(2,3)cij23(2,3)dij1ABAB问题:的坐标与点的坐标和点的坐标有什么关系?2abab问题:的坐标与的坐标和的坐标有什么关系?-4-3-5随堂练习1a=4,6,a=2b,b、且那么的坐标是A、(3,2)B、(2,3)C、(-3,-2)D、(-2,-3)B2a=x-2,3b=1,y+2、若向量与向量相等,那么A、x=1,y=3B、x=3,y=1C、x=1,y=-3D、x=5,y=-1B3AB=x,y,B-2,1,OA、已知的坐是那么的标坐标为A、(x-2,y+1)B、(x+2,y-1)C、(-2-x,1-y)D、(x+2,y+1)C4a=1,1,b=1,-1,c=-1,2,c13133131A-a+bBa-bCa-bD-a+b22222222、若向量那么等于、、、、B5a=3,-1,b=-1,2,-3a-2bA7,1B-7-1C-7,1D7-1、已知那么等于、、,、、,B6Bm,n,AB、已知的坐是标的坐标为(i,j),则点A的坐标为A、(m-i,n-j)B、(i-m,j-n)C、(m+i,n+j)D、(m+n,i+j)A小结平面向量的正交分解平面向量的坐标表示
本文标题:2.3.2平面向量的正交分解及坐标表示(1)
链接地址:https://www.777doc.com/doc-4099394 .html