您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 方程的根与函数的零点课件
一种科学只有在成功地运用数学时,才算达到完善的地步切莫忘,几何代数统一体,永远联系,莫分离数形结合百般好,隔离分家万事休,数与形,本是相倚依,焉能分作两边飞?§3.1.1方程的根与函数的零点数与形,本是相倚依,焉能分作两边飞?数与形,本是相倚依,焉能分作两边飞?数形结合百般好,隔离分家万事休,切莫忘,几何代数统一体,永远联系,莫分离一种科学只有在成功地运用数学时,才算达到完善的地步数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休,数缺形时少直观,形少数时难入微,数缺形时少直观,形少数时难入微,学习目标1.通过二次函数的图像,了解二次函数与一元二次方程的关系,能判断一元二次方程根的存在性及根的个数;2.了解函数的零点与方程根的联系,能利用函数零点与方程根的关系确定方程根的个数。0624053306513xxxxx:ln)()(x(2)061)3x(2求下列方程的根问题问题·探究今天我们可以从教科书中了解各式各样方程的解法,但在数学发展史上,方程的求解却经历了相当漫长的岁月.我国古代数学家在约公元50年—100年编成的《九章算术》,给出了求一次方程、二次方程和三次方程根的具体方法…花拉子米(约780~约850)给出了一次方程和二次方程的一般解法。阿贝尔(1802~1829)挪威数学家.证明了五次以上一般方程没有求根公式。卡尔达诺,意大利数学家,他第一个发表了三次代数方程一般解法的卡尔达诺公式,也称卡当公式(解法的思路来自塔塔利亚,两人因此结怨,争论多年)。他的学生费拉里第一个求出四次方程的代数解。韦达是法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系即“韦达定理”。方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函数函数的图象方程的实数根x1=-1,x2=3x1=x2=1无实数根函数的图象与x轴的交点(-1,0)、(3,0)(1,0)无交点x2-2x-3=0xy0-132112-1-2-3-4..........xy0-132112543.....yx0-12112y=x2-2x+3问题·探究问题2求出表中一元二次方程的实数根,画出相应的二次函数图像的简图,并写出函数的图象与x轴的交点坐标方程ax2+bx+c=0(a0)的根函数y=ax2+bx+c(a0)的图象判别式△=b2-4ac△>0△=0△<0函数的图象与x轴的交点有两个相等的实数根x1=x2没有实数根xyx1x20xy0x1xy0(x1,0),(x2,0)(x1,0)没有交点两个不相等的实数根x1、x2问题3若将上面特殊的一元二次方程推广到一般的一元二次方程及相应的二次函数的图象与x轴交点的关系,上述结论是否仍然成立?1.方程根的个数就是函数图象与x轴交点的个数。2.方程的实数根就是函数图象与x轴交点的横坐标。结论对于函数y=f(x),叫做函数y=f(x)的零点。方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点函数的零点定义:等价关系使f(x)=0的实数x辨析:函数的零点是不是交点?概念·形成2-2和71示例·练习零点的求法(1)代数法1lg3122145122xxfxxxfxxxf求下列函数的零点问题4如图是某地从0点到12点的气温变化图,假设气温是连续变化的,请将图形补充成完整的函数图象。这段时间内,是否一定有某时刻的气温为0度?为什么?问题探究(有或无)零点内在区间或(有或无)零点内在区间或(有或无)零点内在区间或?图像是连续还是间断的观察函数的图像dcdfcfcbcfbfbabfaf,)(03,)(02,)(01结论abxy0ab0yxab0yxab0yx如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在使得f(c)=0,这个c也就是方程f(c)=0的根。,cababbbbbbbbbbbbbbbbbxy0思考1:函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,若函数y=f(x)在区间(a,b)内有零点,一定能得出f(a)·f(b)0的结论吗?结论:函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线:(1)f(a)·f(b)0函数y=f(x)在区间(a,b)内有零点;(2)函数y=f(x)在区间(a,b)内有零点f(a)·f(b)0。•思考2:如果函数y=f(x)在[a,b]上是连续的单调函数,并且在闭区间的两个端点上的函数值互异即f(a)f(b)﹤0,那么这个函数在(a,b)内的零点个数能确定吗?由表3-1和图3.1—3可知f(2)0,f(3)0,即f(2)·f(3)0,说明这个函数在区间(2,3)内有零点。由于函数f(x)在定义域(0,+∞)内是增函数,所以它仅有一个零点。解:用计算器或计算机作出x、f(x)的对应值表(表3-1)和图象(图3.1—3)-4-1.30691.09863.38635.60947.79189.945912.079414.1972123456789xf(x).........x0-2-4-6105y241086121487643219思考:还有没有其他方法?问题5:的零点个数求函数62lnxxxf解:作出函数的图象,如下:因为f(1)=10,f(1.5)=-2.8750,所以f(x)=-x3-3x+5在区间(1,1.5)上有零点。又因为f(x)是(-∞,+∞)上的减函数,所以在区间(1,1.5)上有且只有一个零点。xy0-132112543.....零点的求法(2)图像法问题6.的零点所在的大致区间函数利用函数的图像,指出533xxxf练习2:1的零点个数请判断出函数xxxf23问题7.已知关于x的二次方程x2+2mx+2m+1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围.(2)若方程有一个根在(0,2)内,求m的范围.(3)若方程有一个根比2大,另一个根比2小,求m范围.(4)若方程两根均在区间(0,1)内,求m的范围.【变式引申】65,21,21056)2(,024)1(,02)1(,012)0(mmRmmmfmffmf2165m解:(1)条件说明抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得∴.问题7:已知关于x的二次方程x2+2mx+2m+1=0.(2)若方程有一个根在(0,2)内,求m的范围.(3)若方程有一个根比2大,另一个根比2小,求m范围.(4)若方程两根均在区间(0,1)内,求m的范围.解:由题意得:f(0)f(2)0即(2m+1)(6m+5)0解得:2165m问题7:已知关于x的二次方程x2+2mx+2m+1=0.(3)若方程有一个根比2大,另一个根比2小,求m范围.(4)若方程两根均在区间(0,1)内,求m的范围.解:由题意得:f(2)0即6m+50解得:65m问题7:已知关于x的二次方程x2+2mx+2m+1=0.(4)若方程两根均在区间(0,1)内,求m的范围.解:由题意得:解得:10,0,0)1(,0)0(mff.01,2121,21,21mmmmm或2121m对于函数y=f(x),叫做函数y=f(x)的零点。方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点函数的零点定义:等价关系使f(x)=0的实数x如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在使得f(c)=0,这个c也就是方程f(c)=0的根。,cab零点存在定理函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线:(1)f(a)·f(b)0函数y=f(x)在区间(a,b)内有零点;(2)函数y=f(x)在区间(a,b)内有零点f(a)·f(b)0。三个结论:(3)如果函数y=f(x)在[a,b]上是连续的单调函数,且f(a)f(b)﹤0,那么这个函数在(a,b)内的零点个数是唯一的。零点的求法代数法和图象法函数零点方程根,图象连续总有痕。数形本是同根生,端值计算是根本。借问零点何处有,端值互异零点生。温馨提示作业:作业本设计思路•基于数形结合思想•基于数学文化谢谢,再见!
本文标题:方程的根与函数的零点课件
链接地址:https://www.777doc.com/doc-4109118 .html