您好,欢迎访问三七文档
-1-第一节钢结构的一些基本概念结构是由构件组成的构件的种类:梁、柱、板、墙体、桁架、网架、悬索变力性能:拉、压、弯、剪、扭、疲劳、裂缝扩展(断裂)杆件系统:梁、柱、桁架、网架都属杆件系统结构计算的内容包括:强度稳定结构在静力或动力荷载作用下的变形振动疲劳其中:强度,稳定和变形在结构设计中常要予以计算。振动是在设计跨度大而轻的楼层和楼梯时考虑,主要是防止因人行走或使用时结构产生令人不适的振动。疲劳计算仅在多次反复荷载下才予以考虑。§1强度强度:可指杆件的强度或结构的强度。一.杆件的强度:杆件抵抗破坏的能力。荷载引起的外力≤构件的承载力(由材料强度,构件截面的大小和形状确定)影响因素:荷载:大小,作用方式(拉、压、弯、剪、扭,静力或动力)材料:屈服强度、极限强度、弹性模量等构件截面的大小和形状:截面越大,承载力越大。粗绳比细绳能承受更大的拉力。截面形状的影响则以受弯构件为例,梁就是建筑上应用最广的典型的受弯构件。当一块文具橡皮被弯时,会看到橡皮的一个面伸长了,而另一个面缩短了。梁在受弯时也有同样的表现。将梁看成是由一层层的纤维叠成的。-2-沿着梁高,从伸长变到缩短,中间必有一个层面即没有伸长也没有缩短,这一层称为中性层。对一般的金属材料,如果截面对称于中心线,则中性层就在截面的中心线上;另一方面,弹性材料(包括钢材)的一个基本特点就是材料的受力与材料的变形成正比,因此梁的伸长表面受到的拉力最大,缩短表面受到的压力最大,而中性层则不受力。因此,沿着梁高,梁的应力大小按三角形变化,梁的中性层上应力为零,距中性层越远,应力越大。从这样一个事实出发,为了节约材料,从而将截面做成工字形,翼缘厚,腹板薄,截面的主要面积分布在中性层的两侧远方。因此工形截面的抗弯承载能力要比面积相同、宽度相等的矩形面积大得多,所以承受弯曲变形的构件(梁或柱)多数做成工字形截面。值得指出的是工字形截面有一个弱点,-3-沿Y轴方向,也就是抵抗绕X轴的弯曲(强轴弯曲),有较大的强度,同时也有较大的抗变形刚度。但是沿X方向,也就是当弯曲绕Y轴发生时(弱轴弯曲),构件的强度和刚度都很小,只是相当于一个高度为b,宽度为2t的矩形截面构件(见右上图)。因此当需要构件在两个方向都具有一定的强度和刚度时,人们常使用矩形或方形的箱形截面。当弯曲绕X轴发生时,中性层沿X轴;当弯曲绕Y轴发生时,中性层沿Y轴。截面面积总是有效地分布在中性轴的两侧远方。二、结构的强度:是结构抵抗破坏的能力。结构是由杆件组成的,但结构中某根杆件的破坏并不一定意味着结构破坏。结构的破坏与结构的稳定有直接关联,通常说结构失稳了就意味着结构破坏了。这个问题在结构稳定中再予以介绍。§2刚度简单结构或构件在荷载作用下的变形,可近似地表示为:△=Q/B式中△为结构或构件的变形,Q为荷载效应,B为结构或构件的刚度由此可见,刚度愈大,变形愈小,刚度是衡量结构或构件抵抗变形的能力。一、杆件的刚度:杆件抵抗变形的能力轴向刚度:杆件抵抗轴向拉伸和压缩变形的能力弯曲刚度:杆件抵抗弯曲变形的能力扭转刚度:杆件抵抗扭转变形的能力-4-荷载引起的构件变形≤规范容许的构件变形值(通常以不影响结构正常使用为依据)影响因素:1.荷载:大小,作用方式(拉、压、弯、剪、扭)引起杆件相应的变形。2.材料:弹性模量、屈服强度、屈服后材料的变形能力等。3.杆件的长度、截面大小和形状:一般地说,杆件愈长,刚度愈小,变形愈大。例如,杆件在拉伸荷载作用下的轴向变形与杆件长度成正比,而梁在跨中集中荷载作用下的挠度与梁长的三次幂成正比。截面尺寸愈小,杆件刚度愈小,变形愈大。截面形状对构件的强度有影响,对杆件刚度也有影响,例如,相同长度的圆形截面的抗扭转刚度就与面积相同的正方形截面的抗扭刚度不一样。工字型截面在2个不同方向(强轴方向和弱轴方向)上的抗弯刚度相差很大,例如热轧工字钢I40a绕其强轴弯曲的刚度是绕其弱轴弯曲的刚度的32.9倍。二、结构刚度结构的刚度是结构抵抗变形的能力,刚度愈大,结构的变形就愈小,例如门式刚架是一种由横梁和柱组成的简单结构。结构的刚度是由构件刚度和构件之间加连接形式确定的,例如,横梁和柱的刚度以及梁柱之间的刚性连接就形成了门式刚架刚度。门式刚架要验算屋面竖向荷载下横梁的挠度和风荷载作用下刚架檐口处的侧向位移,因此在设计中要计算门式刚架抗下挠和抗侧移的刚度。§3稳定钢结构的稳定分为结构的稳定和构件的稳定两个概念。一、构件的稳定一般地说,失稳与构件承受压力有关,因为在压力作用下,杆件会发生局部屈曲而导致构件的承载能力降低或全部丧失。一个夸张的例子能形象地说明这个现象,一根绳子,不论多么细,总能承受一定的抗力,但绳子不能承受任何压力,稍一施压,绳子便弯曲失稳了。受压失稳的现象也同样发生在柱与梁等结构构件-5-上。1.柱:压缩失稳a.短柱短柱(假定不发生失稳)强度为Nf=Afy(1-2)Nf---短柱承载能力A----柱面积fy---材料的屈服强度图1-5柱受力图b.长柱由于长,柱在压力N作用下会产生弯曲变形,因此柱不但受压而且受弯。使杆件弯曲的荷载效应叫做弯矩。弯矩的大小等于力乘上一个相关的距离。在长柱受压的情况中,弯矩等于力N乘以相应的挠度,在跨中截面弯矩M=N×δ。当N增加时,挠度δ增大,从而M也增大。当N增至其临界值NE时,M也增加到相应的值。在NE和M的共同作用下,柱子处在失稳的平衡点上,任一微小的外界影响都会导致柱子失稳。NE被称为临界力,两端铰支的弹性柱的临界力NE为:NE=π2EI/L2(1-3)式中π=3.1416圆周率,E-材料的弹性模量I-截面惯性矩仅与截面大小和形状有关L-柱子长度柱子愈长,NE愈小,柱子愈短,NE愈大,当L小到某值使得NE大于或等于Nf时,则称柱子为短柱,短柱不会发生失稳破坏。由上式可见,NE与屈服强度fy无关,与弹性模量(变形模量)E有关。对于长柱,当荷载达到临界力时,对应的截面上的应力一般都小于fy。-6-也就是说NE<Nf二、梁的弯曲失稳一简支梁如前所说,梁在荷载作用下发生弯曲,一面受拉,一面受压。在图1-6所示的简支梁承受向下荷载的情况下,梁是上面受压,下面受拉。如果梁不失稳,则梁的抗弯强度可表示为:Mf=Wfy(2-1)式中Mf-梁的弯曲承载力fy-材料的屈服强度W-梁截面抗弯模量,仅与梁截面大小和形状有关当梁跨度大,而又对受压翼缘没有侧向约束时,梁会发生屈曲失稳破坏,失稳破坏时的弯矩称为临界弯矩。对于对称截面简支梁,其临界弯矩可表示为:ME=π/L×EIy(GJ+EIw×π2/L2)(2-2)式中,E-材料弹性模量,G-材料的剪切模量,Iy-截面绕y轴(弱轴)的惯性矩,仅与截面大小和形状有关,-7-Iw-截面抗翘曲常数,仅与截面大小和形状有关,J-截面抗扭常数,仅与截面大小和形状有关,L-梁受压区横向支撑(约束)的间距,若无支撑则L为梁跨跨长。由上式可见,ME与材料屈服强度fy无关,但与L的平方成反比。无侧向支撑时,梁跨愈大,则临界弯矩愈小,即梁的承载能力就愈小。三、结构的稳定稳定的结构1.从稳定的角度看待结构,结构可分为三种体系a.可变体系:结构的几何形状是可变的,变化可由外界微小的作用引起,作用移开后也不会恢复原状。一个单铰柱是可变体系,靠很小的摩擦力直立,用一个很小的力一推便倒下了。四根杆件用四个铰两两相连形成一个矩形结构。在每一个铰处,杆件都可以自由转动,这也是一个可变体系。设想一对力在对角处一拉,则矩形变成了菱形。b.瞬变体系:瞬变体系实际上是一种可变体系,之所以称为瞬变体系是由于它的几何形状可变动的幅度很小。c.不变体系:在结构被破坏之前,结构的几何形状不会由于外界作用而改变。三杆用三铰两两相连形成的三角形是一个简单的不变体系。体系的可变与不变与结构中杆件的数量有关。加一根斜杆(A杆)到上面提到的四杆四铰可变体系中,结构就变成了不变体系。如果在上述结构中再加一杆,则结构仍是不变体系。现在设想荷载加大,直-8-到将A杆拉断,但其它杆件尚未破坏。结构仍为不变体系,因此可以认为维持上述结构为不变体系的杆件最少数量为5根。杆件数量多于不变体系要求的最少杆件数的结构称为赘余体系。赘余体系是不变体系中的一个类别。在赘余体系中,个别杆件的破坏并不意味整个结构体系就破坏。只要体系是不变的,就仍能承受一定的外荷载。网架结构是一种典型的赘余体系,其杆件数量比维持结构为不变体系的最少杆件数量要多得多。但这并不是说赘余体系的杆件可以任意破坏。一根杆件破坏了,不再承担外力,原来由其承担的力要由其它杆件分担。这就在结构中产生了力的重新分配。有些杆件受的力会增加。如果受力增加的杆件不破坏,则结构仍是安全的。但如果有的杆件由于受的力增加而出现了新的破坏,就可能会发生杆件破坏的连锁反映,导致结构最终破坏。因此,即使是赘余体系也应认真设计。2.只受拉杆件还有一个概念问题需要说明:前面提到的杆件都是即可受拉又可受压,但在实际工程中,常用到一种只能受拉不能受压的杆件。例如悬索、钢绞线、钢链和长而细的圆钢(常用直径范围为12~30mm)。此时,结构稳定对杆件数量的要求会与荷载方向有关。仍以四杆铰节的结构为例,布置在周边的四杆均为普通杆,即可承拉又可受压。在结构的对角线上布置拉杆(只能受拉)。-9-在图1-10A中,外力与拉杆方向一致,结构是稳定的。在图1-10B中,外力与拉杆不在同一对角,导致拉杆受压,由于拉杆不能承压,发生屈曲,结构形状发生改变,成为可变体系。在图1-10C中两对角处均设置拉杆,不论外力作用在哪个方向,结构都是稳定的。但此时与前述相比,维持结构为不变体系的杆件最少数量不再是5根而是6根。3.杆件的连接形式。确定结构是否为不变体系的因素不仅仅是杆件的数量,与杆件之间的连接形式也有关系。如果在上述四杆可变体系中将任意两杆相连的节点由铰节改为刚节点,则结构成为了不变体系。若有两个节点改为刚节点,则结构为一次赘余体系。铰节点:杆件可绕节点转动,即各杆的相对角度可任意改变而又不引起杆件受力。刚节点:杆件不可绕节点转动。杆件之间的相对角度不发生变化。两种节点相比较,不论是从工程费用上还是从施工的难易程度上,铰节点要比刚节点经济和容易做得多。从图1-10中就可以看出这一事实。在施工中,对铰节点的质量控制要比控制刚节点的质量来得容易,因此在工程设计中,如果不是由于稳定或刚度的要求,节点多被做成铰接形式。-10-第二节影响厂房结构用钢的主要因素影响钢结构用钢的因素较多,对不同类型的结构,影响用钢的因素也有区别和侧重。厂房结构较为简单,影响因素也容易叙述一些。归纳的因素,对于一般的结构来说有一定的普遍性。§1结构的支撑体系单层单跨厂房结构(门式刚架)也可以看作是由四个杆件,即两个柱,一个横梁和大地组成的矩形结构。没有吊车的单跨厂房,通常用2~4粒螺栓将柱脚与基础相连,此时可将柱脚与基础(大地)的连接视为铰接。厂房内不可能用斜拉杆,因此柱与屋面必须做成刚接,否则便成了可变体系。沿厂房纵向,也要考虑结构的稳定。在厂房纵向,各门式刚架之间通常在檐口处用刚性系杆铰接相连。如果不用柱间支撑,在水平荷载作用下,结构在纵向是可变体系。因此通常做法是在厂房两头的第一柱间加上交叉的拉杆支撑,荷载通过刚性系杆传至支撑再传至基础。当厂房较长时,在中间跨或相应的跨处也宜布置柱间支撑以免传力路线大长而使结构的纵向刚度不足。一般地,使用交叉拉杆支撑的间距又宜大于50m。-11-也许有人会提出沿厂房纵向亦可做成刚节点。可以这样做,但一般不这样做,并不是由于刚节点施工麻烦,而主要是用钢问题。这个问题可以从下面两方面看:1.如果要将结构在两个方面(横向和纵向)做成刚接,H形截面可能不再能使用。如前所述,H形截面在弱轴方向的强度和刚度都太小,比其强轴方向小十几倍至几十倍。因此要用到箱形截面或管形截面。以上图为例,由于使用支撑,对柱在纵向强度和刚度没有特别要求,采用H型钢截面250×300×8×6,每米用钢量为44.8kg。若取消支撑,采用箱形截面250×300×8×6,每米用钢量为58.2kg,与H型钢截面相比,每米用钢量增加30%。2.
本文标题:钢结构基本概念
链接地址:https://www.777doc.com/doc-4111682 .html