您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初二数学解含字母的不等式(组)培优(详细解析)
第1页(共7页)解含字母不等式(组)培优训练一.选择题1.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.2.不等式0≤ax+5≤4的整数解是1,2,3,4,则a的取值范围是()A.B.a≤C.≤a<﹣1D.a≥3.若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是()A.27B.18C.15D.124.已知非负数a,b,c满足条件a+b=7,c﹣a=5,设S=a+b+c的最大值为m,最小值为n,则m﹣n的值()A.5B.6C.7D.85.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120D.10x﹣5(20﹣x)<1206.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A.m≥5B.m>5C.m≤5D.m<57.若x>0,y>0,且x+y=12.则的最小值是.8.已知实数a,b,c满足不等式|a|≥|b+c|,|b|≥|c+a|,|c|≥|a+b|,求证:a+b+c=0.第2页(共7页)参考答案与试题解析一.选择题(共9小题)2.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.【考点】CC:一元一次不等式组的整数解.菁优网版权所有【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.(试题来源:)【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.故选:B.【点评】解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.不等式0≤ax+5≤4的整数解是1,2,3,4,则a的取值范围是()A.B.a≤C.≤a<﹣1D.a≥【考点】CC:一元一次不等式组的整数解.菁优网版权所有【分析】先求出不等式组的解集,然后根据整数解是1,2,3,4得到关于a的不等式组,解不等式组即可求解.注意要根据a的正负分情况讨论.第3页(共7页)【解答】解:不等式0≤ax+5≤4可化为解得(1)当a=0时,得0≤﹣1,不成立;(2)当a>0时,得﹣≤x≤﹣,因为不等式0≤ax+5≤4的整数解是1,2,3,4,所以﹣≤1,﹣≥4,解得﹣5≤a≤﹣,与a>0不符;(3)当a<0时,得﹣≤x≤﹣;因为不等式0≤ax+5≤4的整数解是1,2,3,4,所以≤a<﹣1.故选:C.【点评】本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是()A.27B.18C.15D.12【考点】C2:不等式的性质.菁优网版权所有【分析】根据不等式的基本性质判断.【解答】解:∵a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,∴﹣2ab﹣2ac﹣2bc=a2+b2+c2﹣(a+b+c)2①∵(a﹣b)2+(b﹣c)2+(c﹣a)2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc;又(a﹣b)2+(b﹣c)2+(c﹣a)2=3a2+3b2+3c2﹣(a+b+c)2=3(a2+b2+c2)﹣(a+b+c)2②①代入②,得3(a2+b2+c2)﹣(a+b+c)2=3×9﹣(a+b+c)2=27﹣(a+b+c)2,∵(a+b+c)2≥0,∴其值最小为0,故原式最大值为27.第4页(共7页)故选:A.【点评】本题主要考查了不等式a2+b2≥2ab.5.已知非负数a,b,c满足条件a+b=7,c﹣a=5,设S=a+b+c的最大值为m,最小值为n,则m﹣n的值()A.5B.6C.7D.8【考点】CE:一元一次不等式组的应用.菁优网版权所有【分析】由于已知a,b,c为非负数,所以m、n一定≥0;根据a+b=7和c﹣a=5推出c的最小值与a的最大值;然后再根据a+b=7和c﹣a=5把S=a+b+c转化为只含a或c的代数式,从而确定其最大值与最小值.【解答】解:∵a,b,c为非负数;∴S=a+b+c≥0;又∵c﹣a=5;∴c=a+5;∴c≥5;∵a+b=7;∴S=a+b+c=7+c;又∵c≥5;∴c=5时S最小,即S最小=12,即n=12;∵a+b=7;∴a≤7;∴S=a+b+c=7+c=7+a+5=12+a;∴a=7时S最大,即S最大=19,即m=19;∴m﹣n=19﹣12=7.故选:C.【点评】本题考查了一元一次不等式组的应用,解答本题的关键是熟练掌握不等式的性质,求出S的最大值及最小值,难度较大.6.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小第5页(共7页)明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120D.10x﹣5(20﹣x)<120【考点】C8:由实际问题抽象出一元一次不等式.菁优网版权所有【分析】小明答对题的得分:10x;小明答错题的得分:﹣5(20﹣x).不等关系:小明得分要超过120分.【解答】解:根据题意,得10x﹣5(20﹣x)>120.故选:C.【点评】此题要特别注意:答错或不答都扣5分.至少即大于或等于.7.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A.m≥5B.m>5C.m≤5D.m<5【考点】CB:解一元一次不等式组.菁优网版权所有【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【解答】解:解不等式2x﹣1>3(x﹣2),得:x<5,∵不等式组的解集为x<5,∴m≥5,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第6页(共7页)11.某射击运动爱好者在一次比赛中共射击10次,前6次射击共中53环(环数均是整数),如果他想取得不低于89环的成绩,第7次射击不能少于6环.【考点】C9:一元一次不等式的应用.菁优网版权所有【分析】他想取得不低于89环的成绩,就是成绩要大于或等于89环,根据这个不等关系就可以列出不等式.【解答】解:已知前6次射击共中53环,不低于89环,故89﹣53=36环假设让最后3枪打最大值,则第7枪不得低于36﹣10×3=6环,如果少于6环,即使后面3枪都是10环,也不能打到89环.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【点评】本题考查了等腰三角形的性质;题目充分运用三个相似的等腰三角形的对应边成比例的性质解题,体现了形数结合的思想.17.若x>0,y>0,且x+y=12.则的最小值是13.【考点】PA:轴对称﹣最短路线问题.菁优网版权所有【分析】将代数式转化为+,理解为A(x,0)到B(0,2)、C(12,3)的距离的最小值,利用勾股定理解答即可.【解答】解:∵x+y=12,∴y=12﹣x,原式可化为:=+,即可理解为A(x,0)到B(0,2)、C(12,3)的距离的最小值.如图:的最小值即B′C的长度.∵B′C==13,∴的最小值为13.故答案为:13第7页(共7页)【点评】本题考查利用轴对称求最短路线的问题,难度较大,解题关键是将求代数式的值巧妙的转化为几何问题.21.已知实数a,b,c满足不等式|a|≥|b+c|,|b|≥|c+a|,|c|≥|a+b|,求证:a+b+c=0.【考点】C2:不等式的性质.菁优网版权所有【分析】此题可以根据绝对值的意义结合不等式的性质进行分析.【解答】证明:∵|a|≥|b+c|,|b|≥|c+a|,|c|≥|a+b|∴a2≥(b+c)2,b2≥(c+a)2,c2≥(a+b)2∴a2+b2+c2≥(b+c)2+(c+a)2+(a+b)2=2(a2+b2+c2)+2ab+2bc+2ca∴a2+b2+c2+2ab+2bc+2ca≤0∴(a+b+c)2≤0,而(a+b+c)2≥0∴a+b+c=0.【点评】一个数的绝对值和平方具有类似性,但出现绝对值时,可用平方求解.
本文标题:初二数学解含字母的不等式(组)培优(详细解析)
链接地址:https://www.777doc.com/doc-4117308 .html