您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 【三年中考真题】九年级上22.2二次函数与一元二次方程同步练习
22.2二次函数与一元二次方程一.选择题(共16小题)1.(2018•杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁2.(2018•大庆)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A.1B.2C.3D.43.(2018•天津)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0B.1C.2D.34.(2018•莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<25.(2018•陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限6.(2017•广安)如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3其中正确的有()个.A.1B.2C.3D.47.(2017•随州)对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小8.(2017•恩施州)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A.5B.4C.3D.29.(2017•盘锦)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程ax2+bx+c=n有两个不相等的实数根,其中正确的有()A.2个B.3个C.4个D.5个10.(2017•枣庄)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大11.(2017•徐州)若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0B.b>1C.0<b<1D.b<112.(2017•苏州)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4B.x1=﹣2,x2=6C.x1=,x2=D.x1=﹣4,x2=013.(2017•朝阳)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣314.(2016•永州)抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2B.m>2C.0<m≤2D.m<﹣215.(2016•宿迁)若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1B.x1=1,x2=3C.x1=﹣1,x2=3D.x1=﹣3,x2=116.(2016•贵阳)若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<a<b<nB.a<m<n<bC.b<n<m<aD.n<b<a<m二.填空题(共8小题)17.(2018•自贡)若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为.18.(2018•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是.19.(2018•孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是.20.(2017•乐山)对于函数y=xn+xm,我们定义y'=nxn﹣1+mxm﹣1(m、n为常数).例如y=x4+x2,则y'=4x3+2x.已知:y=x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为;(2)若方程y′=m﹣有两个正数根,则m的取值范围为.21.(2017•青岛)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.22.(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.23.(2016•大连)如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是.24.(2016•荆州)若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.三.解答题(共8小题)25.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.26.(2018•云南)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.27.(2018•杭州)设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.28.(2017•兴安盟)如图,在平面直角坐标系中,抛物线的顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0).(1)写出C点的坐标,并求出抛物线的解析式;(2)观察图象直接写出函数值为正数时,自变量的取值范围.29.(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.30.(2017•荆州)已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.31.(2016•牡丹江)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(﹣1,8)并与x轴交于点A,B两点,且点B坐标为(3,0).(1)求抛物线的解析式;(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)32.(2016•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.参考答案一.选择题(共16小题)1.B.2.B.3.C.4.A.5.C.6.B.7.C.8.C.9.B.10.D.11.A.12.A.13.C.14.A.15.C.16.D.二.填空题(共8小题)17.﹣1.18.﹣2.19.x1=﹣2,x2=1.20.且.21.m>9.22.<a<或﹣3<a<﹣2.23.(﹣2,0).24.﹣1或2或1.三.解答题(共8小题)25.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.26.解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).27.解:(1)由题意△=b2﹣4•a[﹣(a+b)]=b2+4ab+4a2=(2a+b)2≥0∴二次函数图象与x轴的交点的个数有两个或一个(2)当x=1时,y=a+b﹣(a+b)=0∴抛物线不经过点C把点A(﹣1,4),B(0,﹣1)分别代入得解得∴抛物线解析式为y=3x2﹣2x﹣1(3)当x=2时m=4a+2b﹣(a+b)=3a+b>0①∵a+b<0∴﹣a﹣b>0②①②相加得:2a>0∴a>028.解:(1)∵顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0),∴点C的坐标为(﹣1,0),设抛物线的解析式为y=a(x﹣3)(x+1),把A(1,﹣4)代入,可得﹣4=a(1﹣3)(1+1),解得a=1,∴抛物线的解析式为y=(x﹣3)(x+1),即y=x2﹣2x﹣3;(2)由图可得,当函数值为正数时,自变量的取值范围是x<﹣1或x>3.29.解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.30.(1)证明
本文标题:【三年中考真题】九年级上22.2二次函数与一元二次方程同步练习
链接地址:https://www.777doc.com/doc-4130874 .html