您好,欢迎访问三七文档
1.钻井液中分散相颗粒堵塞油气层1)固相颗粒堵塞油气层钻井液中存在多种固相颗粒,如膨润土、加重剂、堵漏剂、暂堵剂、钻屑和处理剂的不溶物及高聚物鱼眼等。钻井液中小于油气层孔喉直径或裂缝宽度的固相颗粒,在钻井液有效液柱压力与地层孔隙压力之间形成的压差作用下,进入油气层孔喉和裂缝中形成堵塞,造成油气层损害。损害的严重程度随钻井液中固相含量的增加而加剧,特别是分散得十分细的膨润土的含量影响最大。其损害程度与固相颗粒尺寸大小、级配及固相类型有关。固相颗粒侵入油气层的深度随压差增大而加深。2)乳化液滴堵塞油气层对于水包油或油包水钻井液,不互溶的油水二相在有效液柱压力与地层孔隙压力之间形成的压差作用下,可进入油气层的孔隙空间形成油-水段塞;连续相中的各种表面活性剂还会导致储层岩心表面的润湿反转,造成油气层损害。2.钻井液滤液与油气层岩石不配伍引起的损害钻井液滤液与油气层岩石不配伍诱发以下五方面的油气层在损害因素。1)水敏低抑制性钻井液滤液进入水敏油气层,引起粘土矿物水化、膨胀、分散、是产生微粒运移的损害源之一。2)盐敏滤液矿化度低于盐敏的低限临界矿化度时,可引起粘上矿物水化、膨胀、分散和运移。当滤液矿化度高于盐敏的高限临界矿化度,亦有可能引起粘土矿物土水化收缩破裂,造成微粒堵塞。3)碱敏高pH值滤液进入碱敏油气层,引起碱敏矿物分散、运移堵塞及溶蚀结垢。4)涧湿反转当滤液含有亲油表面活性剂时,这些表面活性剂就有可能被亲水岩石表面吸附,引起油气层孔喉表面润湿反转,造成油气层油相渗透率降低。5)表面吸附滤液中所含的部分处理剂被油气层孔隙或裂缝表面吸附;缩小孔喉或孔隙尺寸。3.钻井液滤液与油气层流体不配伍引起的损害钻井液滤液与油气层流体不配伍可诱发油气层潜在损害因素,产生以下五种损害:1)无机盐沉淀滤液中所含无机离子与地层水中无机离子作用形成不溶于水的盐类,例如含有大量碳酸根、碳酸氢根的滤液遇到高含钙离子的地层水时,形成碳酸钙沉淀。2)形成处理剂不溶物当地层水的矿化度和钙、镁离子浓度超过滤液中处理剂的抗盐和抗钙镁能力时,处理剂就会盐析而产生沉淀。例如腐植酸钠遇到地层水中钙离子,就会形成腐植酸钙沉淀。3)发生水锁效应特别是在低孔低渗气层中最为严重。4)形成乳化堵塞特别是使用油基钻井液、油包水钻井液、水包油钻井液时,含有多种乳化剂的滤液与地层中原油或水发生乳化,可造成孔道堵塞。5)细菌堵塞滤液中所含的细菌进入油气层,如油气层环境适合其繁殖生长,就有可能造成喉道堵塞。4.相渗透率变化引起的损害钻井液滤液进入油气层,改变了井壁附近地带的油气水分布,导致油相渗透率下降,增加油流阻力。对于气层,液相(油或水)侵入能在储层渗流通道的表面吸附而减小气体渗流截面积,甚至使气体的渗流完全丧失,即导致“液相圈闭”。5.负压差急剧变化造成的油气层损害中途测试或负压差钻井时,如选用的负压差过大,可诱发油气层速敏,引起油气层出砂及微粒运移。对于裂缝性地层,过大的负压差还可能引起井壁表面的裂缝闭合,产生应力敏感损害。此外,还会诱发地层中原油组分形成有机垢。4.钻井液性能钻井液性能好坏与油气层损害程度高低紧密相关。因为钻井液固相和液相进入油气层的深度及损害程度均随钻井液静滤失量、动滤失量、HTHP滤失量的增大和泥饼质量变差而增加。钻井过程中起下钻、开泵所产生的激动压力随钻井液的塑性粘度和动切力增大而增加。此外,井壁坍塌压力随钻井液抑制能力的减弱而增加,维持井壁稳定所需钻井液密度就要随之增高,若坍塌层与油气层在一个裸眼井段,且坍塌压力又高于油气层压力,则钻井液液柱压力与油气层压力之差随之增高,就有可能使损害加重。在各种特殊轨迹的井眼(定向井、丛式井、水平井、大位移井、多目标井等)的钻井作业中,钻井液性能的优劣对油气层损害的间接影响更加显著,除了上述已经阐述的钻井液的流变性、滤失性和抑制性外,钻井液的携带能力和润滑性能直接影响着进入油气层井段后作业时间的长短,不合理的钻井液携带能力和润滑性能将使钻井液对油气层的浸泡时间延长,使油气层损害加剧。
本文标题:钻井液对储层损害
链接地址:https://www.777doc.com/doc-4141993 .html