您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 概率论与数理统计课后习题答案----复旦版1
1习题一4.P(AB)=1P(AB)=1[P(A)P(AB)]=1[0.70.3]=0.65.1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)=14+14+13112=347.p=5332131313131352CCCC/C8.(1)设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)=517=(17)5(亦可用独立性求解,下同)(2)设A2={五个人生日都不在星期日},有利事件数为65,故P(A2)=5567=(67)5(3)设A3={五个人的生日不都在星期日}P(A3)=1P(A1)=1(17)510.(1)P(A)=CC/CmnmnMNMN(2)由于是无放回逐件取出,可用排列法计算.样本点总数有PnN种,n次抽取中有m次为正品的组合数为Cmn种.对于固定的一种正品与次品的抽取次序,从M件正品中取m件的排列数有PmM种,从NM件次品中取nm件的排列数为PnmNM种,故P(A)=CPPPmmnmnMNMnN由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P(A)=CCCmnmMNMnN可以看出,用第二种方法简便得多.(3)由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为Nn种,n次抽取中有m次为正品的组合数为Cmn种,对于固定的一种正、次品的抽取次序,m次取得正品,都有M种取法,共有Mm种取法,nm次取得次品,每次都有NM种取法,共有(NM)nm种取法,故()C()/mmnmnnPAMNMN此题也可用贝努里概型,共做了n重贝努里试验,每次取得正品的概率为MN,则取得m件正品的概率为()C1mnmmnMMPANN12.设A={发生一个部件强度太弱}133103501()CC/C1960PA13.设Ai={恰有i个白球}(i=2,3),显然A2与A3互斥.213434233377CCC184(),()C35C35PAPA故232322()()()35PAAPAPA214.Ai={第i批种子中的一粒发芽},(i=1,2)(1)1212()()()0.70.80.56PAAPAPA(2)12()0.70.80.70.80.94PAA(3)2112()0.80.30.20.70.38PAAAA15.1)223151115()()22232pC(2)1342111C()()22245/325p16.设Ai={甲进i球},i=0,1,2,3,Bi={乙进i球},i=0,1,2,3,则33312123330()(0.3)(0.4)C0.7(0.3)C0.6(0.4)iiiPAB22223333C(0.7)0.3C(0.6)0.4+(0.7)(0.6)=0.32076174111152222410CCCCC131C21p18.A={下雨},B={下雪}.(1)()0.1()0.2()0.5PABpBAPA(2)()()()()0.30.50.10.7pABPAPBPAB19.设A={其中一个为女孩},B={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87PABPBAPA或在缩减样本空间中求,此时样本点总数为7.6()7PBA20.设A={此人是男人},B={此人是色盲},则由贝叶斯公式()()()()()()()()()PAPBAPABPABPBPAPBAPAPBA0.50.05200.50.050.50.00252121.题21图22.设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|xy|30.如图阴影部分所示.22301604P3题22图22.1)x+y65.11441725510.68125p(2)xy=14.1111244111ddln242xpxy23.()()()()()()()()PABPAPABPBABPABPAPBPAB0.70.510.70.60.5424.设Ai={第一次取出的3个球中有i个新球},i=0,1,2,3.B={第二次取出的3球均为新球}由全概率公式,有30()()()iiiPBPBAPA33123213336996896796333333331515151515151515CCCCCCCCCCCCCCCCCC0.08925.设A={被调查学生是努力学习的},则A={被调查学生是不努力学习的}.由题意知P(A)=0.8,P(A)=0.2,又设B={被调查学生考试及格}.由题意知P(B|A)=0.9,P(B|A)=0.9,故由贝叶斯公式知(1)()()()()()()()()()PAPBAPABPABPBPAPBAPAPBA40.20.110.027020.80.90.20.137即考试及格的学生中不努力学习的学生仅占2.702%(2)()()()()()()()()()PAPBAPABPABPBPAPBAPAPBA0.80.140.30770.80.10.20.913即考试不及格的学生中努力学习的学生占30.77%.26.设A={原发信息是A},则={原发信息是B}C={收到信息是A},则={收到信息是B}由贝叶斯公式,得()()()()()()()PAPCAPACPAPCAPAPCA2/30.980.994922/30.981/30.0127.Ai={箱中原有i个白球}(i=0,1,2),由题设条件知P(Ai)=13,i=0,1,2.又设B={抽出一球为白球}.由贝叶斯公式知111120()()()()()()()iiiPBAPAPABPABPBPBAPA2/31/311/31/32/31/311/3328.设A={产品确为合格品},B={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()PAPBAPABPABPBPAPBAPAPBA0.960.980.9980.960.980.040.0529.设A={该客户是“谨慎的”},B={该客户是“一般的”},C={该客户是“冒失的”},D={该客户在一年内出了事故}则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)PADPAPDAPADPDPAPDAPBPDBPCPDC0.20.050.0570.20.050.50.150.30.330.Ai={第i道工序出次品}(i=1,2,3,4).412341()1()iiPAPAAAA12341()()()()PAPAPAPA10.980.970.950.970.12431.n次独立射击.1(0.8)0.9n即为(0.8)0.1n故n≥11至少必须进行11次独立射击.32.(|)(|)PABPAB即()()()()PABPABPBPB亦即()()()()PABPBPABPB()[1()][()()]()PABPBPAPABPB因此()()()PABPAPB故A与B相互独立.533.设Ai={第i人能破译}(i=1,2,3),则31231231()1()1()()()iiPAPAAAPAPAPA42310.653434.A={飞机被击落},Bi={恰有i人击中飞机},i=0,1,2,3由全概率公式,得30()(|)()iiiPAPABPB=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.1)3101100C(0.35)(0.65)0.5138kkkkp(2)10102104C(0.25)(0.75)0.2241kkkkp36.6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1)A=“某指定的一层有两位乘客离开”;(2)B=“没有两位及两位以上的乘客在同一层离开”;(3)C=“恰有两位乘客在同一层离开”;(4)D=“至少有两位乘客在同一层离开”.【解】由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1)2466C9()10PA,也可由6重贝努里模型:224619()C()()1010PA(2)6个人在十层中任意六层离开,故6106P()10PB(3)由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C种可能结果,再从六人中选二人在该层离开,有26C种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948CCC种可能结果;②4人同时离开,有19C种可能结果;③4个人都不在同一层离开,有49P种可能结果,故1213114610694899()CC(CCCCP)/10PC(4)D=B.故6106P()1()110PDPB37.n个朋友随机地围绕圆桌而坐,求下列事件的概率:(1)甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2)甲、乙、丙三人坐在一起的概率;6(3)如果n个人并排坐在长桌的一边,求上述事件的概率.【解】(1)111pn(2)23!(3)!,3(1)!npnn(3)12(1)!13!(2)!;,3!!nnppnnnn38.[0,a]【解】设这三段长分别为x,y,axy.则基本事件集为由0xa,0ya,0axya所构成的图形,有利事件集为由()()xyaxyxaxyyyaxyx构成的图形,即02022axayaxya如图阴影部分所示,故所求概率为14p.39.某人有n把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k次(k=1,2,…,n)才能把门打开的概率与k无关.【证】11P1,1,2,,Pknknpknn40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i面涂有颜色的概率P(Ai)(i=0,1,2,3).【解】设Ai={小立方体有i面涂有颜色},i=0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000PAPA,24968()0.096,()0.00810001000PAPA.41.对任意的随机事件A,B,CP(AB)+P(AC)P(BC)≤P(A).【证】()[()]()PAPABCPABAC7()()()PABPACPABC()()()PABPACPBC42.3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】设iA={杯中球的最大个数为i},i=1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C3!3()48PA而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C1()416PA因此
本文标题:概率论与数理统计课后习题答案----复旦版1
链接地址:https://www.777doc.com/doc-4148479 .html