您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 载流子浓度参考资料-霍尔系数法
霍尔系数和电阻率的测量把通有电流的半导体置于磁场中,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象称为霍尔效应。随着半导体物理学的发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测量霍尔系数和电导率随温度变化的关系,还可以求出材料的杂质电离能和材料的禁带宽度。一、实验目的1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识;2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的VH-IS和VH-IM曲线;3.确定试样的导电类型、载流子浓度以及迁移率。二、实验原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图2.1(a)所示的N型半导体试样,若在X方向的电极D、E上通以电流IS,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力:BveFg(2.1)其中,e为载流子(电子)电量,v为载流子在电流方向上的平均定向漂移速率,B为磁感应强度。无论载流子是正电荷还是负电荷,Fg的方向均沿Y方向,在此力的作用下,载流子发生偏移,则在Y方向即试样A、A’电极两侧就开始聚集异号电荷,在A、A’两侧产生一个电位差VH,形成相应的附加电场EH——霍尔电场,相应的电压VH称为霍尔电压,电极A、A’称为霍尔电极。电场的指向取决于试样的导电类型。N型半导体的多数载流子为电子,P型半导体的多数载流子为空穴。对N型试样,霍尔电场逆Y方向,P型试样则沿Y方向,有IS(X)、B(Z)EH(Y)0(N型)EH(Y)0(P型)XYZEDISAA’CC’bl++++++++--------dFEFgvEH-eEDISAA’CC’bl---------++++++++dFEFgvEH+e(a)(b)图2.1样品示意图显然,该电场是阻止载流子继续向侧面偏移。试样中载流子将受一个与Fg方向相反的横向电场力:HEeEF(2.2)其中,EH为霍尔电导强度。FE随电荷积累增多而增大,当达到稳定状态时,两个力平衡,即载流子所受的横向电场力FE与洛仑兹力Fg相等,样品两侧电荷的积累就达到平衡,故有BveeEH(2.3)设试样的宽度为b,厚度为d,载流子浓度为n,则电流强度IS与v的关系为bdvneIS(2.4)由式(2.3)、(2.4)可得dBIRdBInebEVSHSHH1(2.5)即霍尔电压VH(A、A’电极之间的电压)与ISB乘积成正比,与试样厚度d成反比。比例系数RH=1/ne称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。根据霍尔效应制作的元件称为霍尔元件。由式(2.5)可见,只要测出VH(伏),以及知道IS(安)、B(高斯)和d(厘米),可按下式计算RH(厘米3/库仑):810BIdVRSHH(2.6)上式中的108是由于磁感应强度B用电磁单位(高斯)而其它各量均采用C、G、S实用单位引入。注:磁感应强度B的大小与励磁电流IM的关系由制造厂家给定,并标明在实验仪上。霍尔元件就是利用上述霍尔效应制成的电磁转换元件。对于成品的霍尔元件,其RH和d已知,因此在实际应用中,式(2.5)常以如下形式出现:BIKVSHH(2.7)其中,比例系数KH=RH/d=1/ned称为霍尔元件灵敏度(其值由制造厂家给出),它表示该器件在单位工作电流和单位磁感应强度下输出的霍尔电压。IS称为控制电流。(2.7)式中的单位取IS为mA、B为KGS、VH为mV,则KH的单位为mV/(mA·KGS)。KH越大,霍尔电压VH越大,霍尔效应越明显。从应用上讲,KH愈大愈好。KH与载流子浓度n成反比,半导体的载流子浓度远比金属的载流子浓度小,因此用半导体材料制成的霍尔元件,霍尔效应明显,灵敏度高,这也是一般霍尔元件不用金属导体而用半导体制成的原因。另外,KH还与d成反比,因此霍尔元件一般都很薄。本实验所用的霍尔元件就是用N型半导体硅单晶切薄片制成的。由于霍尔效应的建立所需时间很短(约10-12—10-14s),因此使用霍尔元件时用直流电或交流电均可。只是使用交流电时,所得的霍尔电压也是交变的,此时,式(2.7)中的IS和VH应理解为有效值。根据RH可进一步确定以下参数。1.由RH的符号(或霍尔电压的正、负)判断试样的导电类型判断的方法是按图2.1所示的IS和B的方向,若测得的VH=VAA’0,(即点A的电位低于点A’的电位)则RH为负,样品属N型,反之则为P型。2.由RH求载流子浓度n由比例系数RH=1/ne得,n=1/|RH|e。应该指出,这个关系式是假定所有的载流子都具有相同的漂移速率得到的,严格一点,考虑载流子的漂移速率服从统计分布规律,需引入3π/8的修正因子(可参阅黄昆、谢希德著半导体物理学)。但影响不大,本实验中可以忽略此因素。3.结合电导率的测量,求载流子的迁移率μ电导率σ与载流子浓度n以及迁移率μ之间有如下关系:ne(2.8)由比例系数RH=1/ne得,μ=|RH|σ,通过实验测出σ值即可求出μ。根据上述可知,要得到大的霍尔电压,关键是要选择霍尔系数大(即迁移率μ高、电阻率ρ亦较高)的材料。因|RH|=μρ,就金属导体而言,μ和ρ均很低,而不良导体ρ虽高,但μ极小,因而上述两种材料的霍尔系数都很小,不能用来制造霍尔器件。半导体μ高,ρ适中,是制造霍尔器件较理想的材料。由于电子的迁移率比空穴的迁移率大,所以霍尔器件都采用N型材料,其次霍尔电压的大小与材料的厚度成反比,因此薄膜型的霍尔器件的输出电压较片状要高得多。就霍尔元件而言,其厚度是一定的,所以实际上采用来表示霍尔元件的灵敏度,KH称为霍尔元件灵敏度,单位为mV/(mAT)或mV/(mAKGS)。nedKH1(2.9)三、实验仪器1.TH—H型霍尔效应实验仪,主要由规格为2500GS/A电磁铁、N型半导体硅单晶切薄片式样、样品架、IS和IM换向开关、VH和Vσ(即VAC)测量选择开关组成。2.TH—H型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字豪伏表组成。四、实验方法1.霍尔电压VH的测量应该说明,在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的A、A’两电极之间的电压并不等于真实的VH值,而是包含着各种副效应引起的附加电压,因此必须设法消除。根据副效应产生的机理(参阅附录)可知,采用电流和磁场换向的对称测量法,基本上能够把副效应的影响从测量的结果中消除,具体的做法是IS和B(即IM)的大小不变,并在设定电流和磁场的正、反方向后,依次测量由下列四组不同方向的IS和B组合的A、A’两点之间的电压V1、V2、V3和V4,即+IS+BV1+IS-BV2-IS-BV3-IS+BV4然后求上述四组数据V1、V2、V3和V4的代数平均值,可得44321VVVVVH通过对称测量求得的VH,虽然还存在个别无法消除的副效应,但其引入的误差甚小,可以略而不计。2.电导率σ的测量σ可以通过图2.1所示的A、C(或A’、C’)电极进行测量,设A、C间的距离为l,样品的横截面积为S=bd,流经样品的电流为IS,在零磁场下,测得A、C(A’、C’)间的电位差为Vσ(VAC),可由下式求得σSVlIs(2.10)3.载流子迁移率μ的测量电导率σ与载流子浓度n以及迁移率μ之间有如下关系:ne由比例系数RH=1/ne得,μ=|RH|σ。五、实验内容仔细阅读本实验仪使用说明书后,按图2.2连接测试仪和实验仪之间相应的IS、VH和IM各组连线,IS及IM换向开关投向上方,表明IS及IM均为正值(即IS沿X方向,B沿Z方向),反之为负值。VH、Vσ切换开关投向上方测VH,投向下方测Vσ。经教师检查后方可开启测试仪的电源。注意:图2.2中虚线所示的部分线路即样品各电极及线包引线与对应的双刀开关之间连线已由制造厂家连接好。必须强调指出:严禁将测试仪的励磁电源“IM输出”误接到实验仪的“IS输入”或“VH、Vσ输出”处,否则一旦通电,霍尔元件即遭损坏!为了准确测量,应先对测试仪进行调零,即将测试仪的“IS调节”和“IM调节”旋钮均置零位,待开机数分钟后若VH显示不为零,可通过面板左下方小孔的“调零”电位器实现调零,即“0.00”。转到霍尔元件探杆支架的旋钮X、Y,慢慢将霍尔元件移到螺线管的中心位置。1.测绘VH-IS曲线将实验仪的“VH、Vσ”切换开关投向VH侧,测试仪的“功能切换”置VH。保持IM值不变(取IM=0.6A),测绘VH-IS曲线,记入表2.1中,并求斜率,代入式(2.6)求霍尔系数RH,代入式(2.7)求霍尔元件灵敏度KH。表2.1IM=0.6AIS取值:1.00-4.00mAISV1(mV)V2(mV)V3(mV)V4(mV)44321VVVVVH(mV)红黑红黑红黑黑红IS输入接测试仪IS输出接测试仪VH、Vσ输入接测试仪IM输出IM输入VH、Vσ输入+-橙黄白黑红橙黄白DEANCA’C’X、Y调节样品架样品电磁铁励磁线圈图2.2霍尔效应实验仪示意图(mA)+IS、+B+IS、-B-IS、-B-IS、+B1.001.502.002.503.004.002.测绘VH-IM曲线实验仪及测试仪各开关位置同上。保持IS不变(取IS=3.00mA),测绘VH-IM曲线,记入表2.2中。表2.2IS=3.00mAIM取值:0.300-0.800AIM(A)V1(mV)V2(mV)V3(mV)V4(mV)44321VVVVVH(mV)+IS、+B+IS、-B-IS、-B-IS、+B0.3000.4000.5000.6000.7000.8003.测量Vσ值将“VH、Vσ”切换开关投向Vσ侧,测试仪的“功能切换”置Vσ。在零磁场下,取IS=2.00mA,测量Vσ。注意:IS取值不要过大,以免Vσ太大,毫伏表超量程(此时首位数码显示为1,后三位数码熄灭)。4.确定样品的导电类型将实验仪三组双刀开关均投向上方,即IS沿X方向,B沿Z方向,毫伏表测量电压为VAA’。取IS=2mA,IM=0.6A,测量VH大小及极性,判断样品导电类型。5.记录实验仪器的磁场强度,求样品的RH、n、σ和μ值。六、预习思考题1.列出计算霍尔系数RH、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。2.如已知霍尔样品的工作电流IS及磁感应强度B的方向,如何判断样品的导电类型。3.在什么样的条件下会产生霍尔电压,它的方向与哪些因素有关?4.实验中在产生霍效应的同时,还会产生哪些副效应,它们与磁感应强度B和电流IS有什么关系,如何消除副效应的影响?附录实验中霍尔元件的副效应及其消除方法(1)不等势电压降VO如图2.3所示,由于元件的测量霍尔电压的A、A’两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,因此,即使不加磁场,只要的电流IS通过,就有电压VO=ISr产生,其中r为A、A’所在的两个等势面之间的电阻,结果在测量VH时,就叠加了VO,使得VH值偏大(VO与VH同号)或偏小(当VO与VH异号)。由于目前产生工艺水平较高,不等势电压很小,像本实验用的霍尔元件试样N型半导体硅单晶切薄片只有几百微伏左右,故一般可以忽略不计,也可以用一支电位器加以平衡。在本实验中,VH的符号取决于IS和B两者的方向,而VO只与IS的方向有关,而与磁感应强度B的方向无关,因此VO可以通过改变IS的方向予以消除。(2)热电效应引起的附加电压VE如图2.4所示,由于实际上载流子迁移速率v服从统计分布规律,构成电流的载流子速度不同,若速度为v的载流子所受的洛仑兹力与霍尔电场的作用力刚好抵消,则速度小于v的载流子受到的洛仑兹力小于霍尔电场的作用力,将向霍尔电场作用力方向偏转;速度大于v的载流子受到的洛仑兹力大于霍尔电场的作用力,将向洛仑兹力方向偏转。这样使得一侧高速载流子较多,
本文标题:载流子浓度参考资料-霍尔系数法
链接地址:https://www.777doc.com/doc-4193217 .html