您好,欢迎访问三七文档
~1~鸡兔同笼问题例题【例1】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只?(基本假设法)【解析】方法一:抬腿法。每只动物都抬起2条腿,剩下94-35×2=24.剩下的每只兔子两条腿,所以共有12只兔子。方法二:假设35只都是兔子,那么就有35x4=140(只)脚,假设的比实际的多了140-94=46(只).多46只的原因是35只里不全是兔子,现在我们得把鸡给换回来,一只兔子换一只鸡会少2条腿,所以得换46÷2=23只鸡回来。方法三:还可以假设35只都是鸡,那么共有脚2×35=70(只),比94只脚少了94-70=24(只)脚,每只鸡比兔子少2只脚,那么共有兔子24÷2=12(只).要点:“抬腿”法简单易操作,但适用范围较小;“假设法“稍有难度,但必须掌握,因为假设法在以后很多题目中都会用到,比如工程问题和行程问题等。一般假设法总结:假设兔子,得出鸡;假设鸡,得出兔子。(方便孩子做题,但千万不能单纯记忆)【例题2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?(变型假设法)【解析】方法一:假设鸵鸟数跟梅花鹿一样多,那么总脚数就得减去多出来20只鸵鸟的40只脚,新的总脚数就是168只。鸵鸟和梅花鹿一样多,所以梅花鹿的腿数是鸵鸟的两倍。那么168只就是3倍,所以梅花鹿的腿数是112条,就由28只,鸵鸟是48只。方法二:假设梅花鹿数跟鸵鸟一样多,那么总脚数就得增加80只脚,新的总脚数就是288只。梅花鹿和鸵鸟一样多,所以梅花鹿的腿数是鸵鸟的两倍。那么288只就是3倍,所以鸵鸟有96条腿,就有48只,梅花鹿有28只。要点:和倍问题与鸡兔同笼【例题3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?(变型题)【解析】假设都是三轮摩托车,应有3×41=123轮子,少了127-123=4(个)轮子.每把一辆汽车假设为三轮摩托车,会减少4-3=1(个)轮子.汽车有4÷1=4(辆);~2~从而求出三轮摩托车有37辆.同理,可假设都是汽车。要点:基础变型练习,学生要敏锐的发现隐藏的鸡兔同笼。【例题4】100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?(变型题)【解析】本题由中国古算名题“百僧分馍问题”演变而得.如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解.假设100人全是大和尚,那么共需馍300个,比实际多160个.现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人).同样,也可以假设100人都是小和尚,这里不再作说明.要点:基础变型练习,学生要敏锐的发现隐藏的鸡兔同笼。【例题5】(中国古代僧粥问题)一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?(变型题)【解析】我们把大碗换小碗,换小碗盛粥!把一大碗粥分成三小碗粥,则原题变为一百个和尚喝三百碗粥,一个大和尚喝九碗粥,一个小和尚喝一碗粥.然后仍然用假设法:假设都是小和尚,只能喝1×100=100(碗)粥,有一个大和尚被当成小和尚会少9-1=8(碗)粥,一共少了300-100=200(碗)粥.所以大和尚有200÷8=25(个);小和尚有100-25=75(个).要点:转化的思想,把大碗换小碗,换小碗盛粥。【例题6】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?(变型题)【解析】本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差100+20=120(元),即损1个花瓶不但得不到20元的运费,而且要赔偿100元.本例可假设250个花瓶都完好,这样可得运费20×250=5000(元).这样比实际多得5000-4400=600(元).就是因为有损坏的瓶子,损坏1个花瓶相差120元.现共相差600元,从而求出共损坏多少个花瓶.根据以上分析,可得损坏了600÷120=5个要点:一来一回是学生经常犯的错误。~3~【例题7】甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10发,共得208分,最后甲比乙多得64分,乙打中多少发?【解析】乙得分为(208-64)÷2=72(分),如果乙每发都打中可以得20×10=200(分),脱靶一发少20+12=32(分);乙脱靶(200-72)÷32=4(发),所以乙打中10-4=6(发)。要点-和差问题与鸡兔同笼【例题8】一张数学试卷,只有25道选择题.做对一题得4分,做错一题倒扣1分;如不做,不得分也不扣分.若小明得了78分,那么他做对____题,做错_____题,没做___题.(有难度的变型题)【解析】这道题不是普通的鸡兔同笼问题,需要寻找一些特殊的线索.小明得了78分,而且只有做对了题目才能得分.78÷419,所以可以知道小明至少做对20道题目,否则一定低于4×19=76(分);再假设他做对21题,发现即使另外四题都错,小明仍然有21×4-4×1=80(分),超过了78分,所以小明至多做对20道题目;综上,可以断定小明做对了20道题.至此本题转化为简单鸡兔同笼问题.假设剩下5题全部没做,那么小明应得4×20=80(分).但是只得了78分,说明又倒扣了2分,说明错了2道题,3道题没做.所以小明做对了20道题,做错了2道题,没做3道题.要点:得分、扣分、不给分相当于三种动物,不能直接用鸡兔同笼。【例题9】春风小学3名学生参加数学竞赛,共10道题,答对一道题得10分,答错一道题扣3分,这3名同学都回答了所有的题,小明得了87分,小红得了74分,小华得了9分,他们三人一共答对了_____道题.【解析】三人共得87+74+9=170(分),比满分10×10×3=300(分),少300-170=130(分),因此三个人共做错:130÷(10+3)=10(道)题,共答对了30-10=20(道)题要点:合起来算比单个算更节省时间,给孩子提供合起来算的思路。【例题10】李明和张亮轮流打一份稿件,李明每天打15页,张亮每天打10页,他们一连打了25天,平均每天打12页,问李明、张亮各打了多少天?(为工程问题假设法做~4~准备)【解析】从总数入手,由题意可知他们一共打了25×12=300(页).假设25天都是李明打的,那么打的页数是:15×25=375(页),比实际打的多375-300=75(页),而李明每天比张亮多打:15-10=5(页),所以张亮打的天数是:75÷5=15(天),李明打的天数是:25-15=10(天)要点:为工程问题中的假设法做准备【例题11】使用甲种农药每千克要兑水20千克,使用乙种农药每千克要兑水40千克.根据农科院专家的意见,把两种农药混起来用可以提高药效,现有两种农药共50千克,要配药水1400千克,那么,其中甲种农药用了多少千克?(浓度问题中的假设法)【解析】假设50千克都是乙种农药,那么需要兑水40×50=2000(千克).但题目要求配药水1400千克,即实际兑水1400-50=1350(千克).多用了2000-1350=650(千克)水,又已知使用乙种农药每千克兑水需要比使用甲种农药多兑水40-20=20(千克),所以推知,在混合农药中甲种农药有650÷20=32.5(千克).要点:浓度问题比较抽象,用鸡兔同笼有些难度,需要加深对浓度问题的认识。【例题12】一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆.已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?【解析】要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨.利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨).根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车.这样每辆小卡车能装144÷9=16(吨).由此可求出这批钢材有720吨.
本文标题:鸡兔同笼例题
链接地址:https://www.777doc.com/doc-4224008 .html