您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 招标投标 > 3双自旋卫星稳定系统-Read
第五章航天器的被动姿态控制系统5.1自旋卫星的稳定性和章动性5.2自旋卫星的章动阻尼5.3双自旋卫星稳定系统5.4重力梯度稳定系统5.5重力梯度稳定卫星的天平动阻尼自旋稳定的原理:利用航天器绕自旋轴旋转所获得的陀螺定轴性,使航天器的自旋轴方向在惯性空间定向。主要优点:简单。抗干扰。因为当自旋航天器受到恒定干扰力矩作用时,其自旋轴是以速度漂移,而不是以加速度漂移。自旋稳定能使航天器发动机的推力偏心影响减至最小。5.1自旋卫星的稳定性和章动性点击观看虚拟现实演示zxyyxzzyzxzxyyxyzzyxxMIIdtdIMIIdtdIMIIdtdI)()()(5.1.1自旋卫星的稳定性令坐标系是卫星的主轴本体坐标系,从而卫星的主惯量分别为,,;惯量积为零。那么卫星姿态自由转动()的欧拉动力学方程即可由式(3.33)(3.33)OxyzxIyIzI0M5.1.1自旋卫星的稳定性令坐标系是卫星的主轴本体坐标系,从而卫星的主惯量分别为,,;惯量积为零。那么卫星姿态自由转动()的欧拉动力学方程即可由式(3.33)得(5.1)OxyzxIyIzI0M000xyyxzzzxzxyyyzzyxxIIdtdIIIdtdIIIdtdI式中,,,是卫星对空间的瞬时转速在本体坐标系各轴上的分量。要分析自旋体自由运动的性质,必须从欧拉动力学方程式(5.1)中解出星体角速率,,。不失一般性,假设卫星绕轴自旋,且(1)星体相对于自旋轴是轴对称的,即;(2),。xyzωxyzOxtzyIIIxyxzOxyz为此,式(5.1)可以进行简化,得出(5.2a)(5.2b)(5.2c)0dtdIxxzxxzyyIIdtdIyxyxzzIIdtdI将式(5.2b)和(5.2c)相互替代,则上式化为=常数(5.3a)(5.3b)(5.3c)式中(5.4)0xx0222yydtd0222zzdtdzyxyxzxIIIIII202显然,要使卫星绕自旋轴旋转稳定,必须使,始终为微量,满足条件,,即动力学方程式(5.3)的,解必须是李雅普诺夫意义下稳定的。其充要条件是由式(5.4)分析得满足的条件是:(a)且,即星体绕最大主惯量轴旋转;(b)且,即星体绕最小主惯量轴旋转。当条件(a)或(b)成立时,和将在有限值内振荡;反之,和将发散,并导致自旋轴翻滚。yxIIzxIIyxIIzxIIyzxyzzyyzzy20Ox由上述简单分析得知,自旋轴为最大惯量轴(a)和最小惯量轴(b)都是稳定的,星体保持自旋稳定的结构形状如图5.2所示。1958年美国发射第一颗人造地球卫星“探险者—1号”(Explorer—I),它是一个长圆柱体,带有四根横向伸出的挠性鞭状天线(见图5.3)。本来要使卫星绕其最小惯量轴自旋稳定,但运行一个轨道周期之后,卫星便显示出半角为1rad的进动运动。在几天之内,卫星获得了另一种本质上稳定的运动—绕其最大惯量轴旋转。“探险者-51号”但是在这次飞行前,人们没有怀疑过绕最小惯量轴旋转的稳定性。从此例可以看出实践出真知的道理。点击观看虚拟现实演示上面分析过,一个绝对刚体无论绕最大惯量轴或者绕最小惯量轴的旋转都是稳定的,但是由于鞭状天线的弯曲提供了一种通过结构阻尼耗散能量的机构,所以“探险者一1号”并不是刚体。因为损失了机械能,动量矩守恒原理迫使卫星绕着一根与旋转对称轴倾斜的轴进动,进动和弯曲运动的动力学耦合能使能量耗散过程继续下去,直到获得最小能量动力学状态,绕最大惯量轴旋转。综上所述,假设对称自旋卫星近似于刚体,不受外力矩作用,定义自旋轴惯量与横向轴惯量之比为惯量比,即xIzyIItxzxyxIIIIII则自旋卫星的稳定准则就可以总结如下:若,卫星是短粗的,短粗卫星自旋运动稳定。若,卫星是细长的,细长卫星自旋运动不稳定。注意,在工程上为了确保稳定性,应设计至少1105.15.1.2自旋卫星的章动性为了便于分析,仍考虑航天器是相对于自旋轴对称的星体的情况,即。此时,线性化的欧拉动力学方程式(5.1)可写为=常数(5.5a)(5.5b)(5.5c)式中(5.6)OxxtzyIIII0xx0zydtd0yzdtd0xttxIII从方程组式(5.5)可以看出,对称自旋卫星的自旋运动是独立的,它和横向运动之间没有耦合作用。设横向运动的初始状态分别为,,,,求解方程组式(5.5)得(5.7)(5.8)从上两式可以看出对称自旋卫星姿态运动的特点是在本体坐标系中,横向角速度分量,周期性地变化,0y0z0y0z0xxttyyysin0cos0ttzzzsin0cos0yz周期为,幅值取决于它们的初始值,而自旋转速始终为常值。用乘方程式(5.5b),用乘方程式(5.5c),将两结果相加得这表明为常数,为此定义合成角速率常值(5.9)于是,在本体坐标系中,星体的转速矢量可以表达为(5.10)2xyz02122zyzzyydtddtddtd22zy2122zytωtxzyxωωikjiω式中,是,的合成角速度矢量。由于它们处在和自旋轴垂直的平面内,因此称之为横向角速度。由于和周期性变化,所以在本体坐标系Oyz平面内,绕Ox轴以速率旋转,而幅值恒定。由此可见,星体的瞬时转速绕自旋轴Ox作圆锥运动,如图5.4所示。kjωzytyzyztωt点击观看虚拟现实演示考虑到在无外力矩作用下,航天器动量矩H守恒,即在空间中固定不变,以此为基准便可以进一步讨论自旋卫星的运动规律。由式(3.22)和(3.32)知,H在本体坐标系中可表示为(5.11)从上式看出,H由横向和轴向两部分组成。由于绕Ox轴旋转,因此Ox也必然作圆锥运动,才可能使得它们的合矢量H在空间定向。从式(5.10)中解出代人式(5.11)得xyzxxyyzzxxttHhhhIIIIIijkijkiωt(5.12)这里为的模,()即为方向的单位矢量。从式(5.12)可以得出两条重要的结论。(1)航天器动量矩H、瞬时转速和自旋轴Ox3个矢量必定在同一平面内。(2)在空间的运动由两种圆锥运动合成,一是绕自旋轴Ox(即方向)的圆锥运动,如式(5.12)右边第二项所示,其转速速率为;二是绕动量矩H的圆锥运动,如式(5.12)右边第一项所示,其转速速率为。HH1xtxtttIIHHHIIIHiiωωitrIHHHH我们称自旋卫星瞬时转速的这两种圆锥运动为章动。其中绕自旋轴的圆锥运动称为本体章动,所形成的轨迹圆锥称为本体锥,称为本体章动速率;绕的圆锥运动称为空间章动,所形成的圆锥称为空间锥,则称为空间章动速率。rH显然,由于H固定不变,空间锥在空间也是固定的。整个自旋卫星的姿态运动可以综合描述为:星体绕自旋轴旋转,同时本体锥在空间锥上滚动。两锥切线方向即为方向,如图5.5所示。由于本体锥在空间锥上滚动,所以星体自旋轴Ox也绕H作圆锥运动,且其速率就是,如图5.6所示。r点击观看虚拟现实演示自旋轴Ox与动量矩H之间的夹角称为章动角。由式(5.11)中包含的矢量间的几何关系,特别是,容易得出(5.13)或(5.14)可见,对于轴对称自旋卫星,由于恒定,所以章动角也是常值,且O≤90°。类似地,还可以通过式(5.10)和图5.4描述的几何关系确定与自旋轴Ox之间的夹角为(5.15)tOxωxxttIItanHIxxcosxtantx代人式(5.13)得与之间的关系式(5.16)此外,将式(5.14)代入还可得(5.17)再从式(5.6)中解出代人式(5.17)便得到了本体章动速率与空间章动速率之间的关系,即(5.18)利用式(5.6)、(5.16)、(5.18),可以讨论自旋卫星不同惯量情况下的章动运动。tantantxIIrcosxxrttIHIIxcosxtrxIII090情况1:,即星体为扁粗形,自旋轴为最大惯量轴,如图5.2(a)所示。(1),与同号,这表明绕自旋轴本体锥旋转的方向和自旋方向同向;(2)与同号,这表明本体锥与空间锥旋转的方向相同;(3),H在与Ox之间,空间锥在本体锥之内。xtII0xωrω情况2:,即星体为细长形,自旋轴为最小惯量轴,如图5.2(b)所示。(1),与异号,这表明绕自旋轴的本体锥旋转方向和自旋方向相反;(2)与异号,这表明本体锥与空间锥旋转的方向相反;(3),在H和Ox之间,空间锥在本体锥之外。xtII0xωrω总之,从本节的讨论可以看出,只要横轴存在初始角速度和或角加速度和,即使外力矩不再存在,卫星将始终存在不衰减的横向角速度(即和)。由式(5.13)和(5.15)显见,,,章动就存在,从而影响自旋卫星的定向性。由此可以知道,消除章动是设计自旋稳定卫星最基本的任务。本节是以自旋轴为Ox为例进行讨论的,若自旋轴为Oy或Oz,结论不会改变。0y(0)z(0)y(0)ztyz00以上分析是假设卫星本体轴与主惯量轴完全重合的情况。若卫星本体轴与主惯量轴不重合时(实际上是存在的),还要产生自旋轴摇摆运动,为此自旋卫星设计和星体总装时还要求把自旋轴摇摆消除或者降低到允许水平以下。5.2自旋卫星的章动阻尼章动存在将使自旋轴产生圆锥运动,这样星体上各种探测器就不能平稳地扫描。消除章动,使自旋轴、转速和动量矩三者重合,就成为自旋卫星控制的重要任务。H章动阻尼按是否使用星上能源分为被动章动阻尼和主动章动阻尼两种形式。被动章动阻尼通过被动章动阻尼器来吸收衰减章动能量;主动章动阻尼则是在星上设置控制系统。5.2.1被动章动阻尼器在被动章动阻尼器内装有阻尼块,此阻尼块与航天器壳体之间是悬浮的或者是弹性联接的。当航天器自旋轴作圆锥运动时,航天器内各点的离心力不断地变化,阻尼块将在阻尼器内部产生相对运动。被动章动阻尼器的工作原理就是利用阻尼块的相对运动耗散星体章动的动能,起到阻尼航天器的横向角速度,达到消除章动角的目的。航天器上采用的被动章动阻尼器的种类很多,各种阻尼器的主要区别在于:阻尼块的形式:有固体(球状、块状)或液体等;阻尼块支撑的形式:有轴承、悬挂或封闭容器;阻尼的方式:有利用黏性气体内部摩擦、黏性液体内部摩擦、机械摩擦、或磁一涡流等;恢复力的方式:有利用离心力或机械弹簧等。下面介绍两种典型的被动章动阻尼器。1.管中球阻尼器阻尼器由一对圆弧形弯管组成,弯管装在星体的子午面内,称为子午面阻尼器(见图5.7);或装在平行于赤道面的平面内,称为赤道面阻尼器。弯管的凹面朝着自旋轴,并且圆弧的等分线垂直于自旋轴并和自旋轴相交。管内有一球,作为阻尼块,球的直径略小于管子的内径。当星体只有自旋时,球停留在管子的对称中心;当星体有章动时,球将被迫来回滚动。阻尼是黏性液体或气体阻尼。利用阻尼力所做的功来耗散章动的功能,使章动角逐渐衰减。管中球阻尼器主要缺点是有剩余章动角,这是滚动摩擦造成的。管中球阻尼器接着,从能量的角度来分析管中球阻尼器对章动的阻尼作用。自旋卫星的转动动能可写为(5.19)利用式(5.13)、(5.14)和(5.15)所包含的几何关系得22111222xxttxtxxttkEHIiIiIIcosxxIHsinttIHcosxsint对式(5.19)进行变换得故得(5.20)对上式求导,则得到自旋卫星转动能量耗散速率(5.21)221122xxttxxxtttkIIIIHHHHEH
本文标题:3双自旋卫星稳定系统-Read
链接地址:https://www.777doc.com/doc-4230571 .html