您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 圆锥曲线概念归纳及题型总结
1圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点1F、2F的距离的和等于常数2a(大于21||FF)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。若M为椭圆上任意一点,则有21||||2MFMFa。椭圆的标准方程为:22221xyab(0ab)(焦点在x轴上)或12222bxay(0ab)(焦点在y轴上)。注:①以上方程中,ab的大小0ab,其中222bac;②在22221xyab和22221yxab两个方程中都有0ab的条件,要分清焦点的位置,只要看2x和2y的分母的大小。例如椭圆221xymn(0m,0n,mn)当mn时表示焦点在x轴上的椭圆;当mn时表示焦点在y轴上的椭圆。(2)椭圆的性质①范围:由标准方程22221xyab知||xa,||yb,说明椭圆位于直线xa,yb所围成的矩形里;②对称性:在曲线方程里,若以y代替y方程不变,所以若点(,)xy在曲线上时,点(,)xy也在曲线上,所以曲线关于x轴对称,同理,以x代替x方程不变,则曲线关于y轴对称。若同时以x代替x,y代替y方程也不变,则曲线关于原点对称。所以,椭圆关于x轴、y轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x轴、y轴的交点坐标。在椭圆的标准方程中,令0x,得yb,则1(0,)Bb,2(0,)Bb是椭圆与y轴的两个交点。同理令0y得xa,即1(,0)Aa,2(,0)Aa是椭圆与x轴的两个交点。所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。同时,线段21AA、21BB分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a;在22RtOBF中,2||OBb,2||OFc,22||BFa,且2222222||||||OFBFOB,即222cab;④离心率:椭圆的焦距与长轴的比cea叫椭圆的离心率。∵0ac,∴01e,且e越接近1,c就越接近a,从而b就越小,对应的椭圆越扁;反之,e越接近于0,c就越接近于0,从而b越接近于a,这时椭圆越接近于圆。当且仅当ab时,0c,两焦点重合,图形变为圆,方程为222xya。2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(12||||||2PFPFa)。注意:①式中是差的绝对值,在1202||aFF条件下;12||||2PFPFa时为双曲线的一支;21||||2PFPFa时为双曲线的另一支(含1F的一支);②当122||aFF时,12||||||2PFPFa表示两条射线;③当122||aFF时,12||||||2PFPFa不表示任何图形;④两定点12,FF叫做双曲线的焦点,12||FF叫做焦距。2椭圆和双曲线比较:椭圆双曲线定义1212||||2(2||)PFPFaaFF1212||||||2(2||)PFPFaaFF方程22221xyab22221xyba22221xyab22221yxab焦点(,0)Fc(0,)Fc(,0)Fc(0,)Fc注意:如何用方程确定焦点的位置!(2)双曲线的性质①范围:从标准方程12222byax,看出曲线在坐标系中的范围:双曲线在两条直线ax的外侧。即22ax,ax即双曲线在两条直线ax的外侧。②对称性:双曲线12222byax关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线12222byax的对称中心,双曲线的对称中心叫做双曲线的中心。③顶点:双曲线和对称轴的交点叫做双曲线的顶点。在双曲线12222byax的方程里,对称轴是,xy轴,所以令0y得ax,因此双曲线和x轴有两个交点)0,()0,(2aAaA,他们是双曲线12222byax的顶点。令0x,没有实根,因此双曲线和y轴没有交点。1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个端点。2)实轴:线段2AA叫做双曲线的实轴,它的长等于2,aa叫做双曲线的实半轴长。虚轴:线段2BB叫做双曲线的虚轴,它的长等于2,bb叫做双曲线的虚半轴长。④渐近线:注意到开课之初所画的矩形,矩形确定了两条对角线,这两条直线即称为双曲线的渐近线。从图上看,双曲线12222byax的各支向外延伸时,与这两条直线逐渐接近。⑤等轴双曲线:1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线。定义式:ab;2)等轴双曲线的性质:(1)渐近线方程为:xy;(2)渐近线互相垂直。注意以上几个性质与定义式彼此等价。亦即若题目中出现上述其一,即可推知双曲线为等轴双曲线,同时其他几个亦成立。3)注意到等轴双曲线的特征ab,则等轴双曲线可以设为:)0(22yx,当0时交点在x轴,当0时焦点在y轴上。⑥注意191622yx与221916yx的区别:三个量,,abc中,ab不同(互换)c相同,还有焦点所在的坐标轴也变了。3.抛物线(1)抛物线的概念平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)。定点3F叫做抛物线的焦点,定直线l叫做抛物线的准线。方程022ppxy叫做抛物线的标准方程。注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(2p,0),它的准线方程是2px;(2)抛物线的性质一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:pxy22,pyx22,pyx22.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下表:标准方程22(0)ypxp22(0)ypxp22(0)xpyp22(0)xpyp图形焦点坐标(,0)2p(,0)2p(0,)2p(0,)2p准线方程2px2px2py2py范围0x0x0y0y对称性x轴x轴y轴y轴顶点(0,0)(0,0)(0,0)(0,0)离心率1e1e1e1e说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调p的几何意义:是焦点到准线的距离。oFxyloxyFlxyoFl4直线和圆锥曲线经常考查的一些题型直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题,从而用代数方法判断直线与曲线的位置关系。解决直线和圆锥曲线的位置关系的解题步骤是:(1)直线的斜率不存在,直线的斜率存在,(2)联立直线和曲线的方程组;(3)讨论类一元二次方程(4)一元二次方程的判别式(5)韦达定理,同类坐标变换(6)同点纵横坐标变换(7)x,y,k(斜率)的取值范围(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等运用的知识:1、中点坐标公式:1212,y22xxyyx,其中,xy是点1122(,)(,)AxyBxy,的中点坐标。2、弦长公式:若点1122(,)(,)AxyBxy,在直线(0)ykxbk上,则1122ykxbykxb,,这是同点纵横坐标变换,是两大坐标变换技巧之一,2222221212121212()()()()(1)()ABxxyyxxkxkxkxx221212(1)[()4]kxxxx或者2222212121212122111()()()()(1)()ABxxyyxxyyyykkk2121221(1)[()4]yyyyk。3、两条直线111222:,:lykxblykxb垂直:则121kk两条直线垂直,则直线所在的向量120vv4、韦达定理:若一元二次方程20(0)axbxca有两个不同的根12,xx,则1212,bcxxxxaa。常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题5题型六:面积问题题型七:弦或弦长为定值问题题型八:角度问题问题九:四点共线问题问题十:范围问题(本质是函数问题)问题十一、存在性问题:(存在点,存在直线y=kx+m,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线:1lykx与椭圆22:14xyCm始终有交点,求m的取值范围思路点拨:直线方程的特点是过定点(0,1),椭圆的特点是过定点(-2,0)和(2,0),和动点0),4mm(,且。解:根据直线:1lykx的方程可知,直线恒过定点(0,1),椭圆22:14xyCm过动点0),4mm(,且,如果直线:1lykx和椭圆22:14xyCm始终有交点,则14mm,且,即14mm且。规律提示:通过直线的代数形式,可以看出直线的特点::101lykx过定点(,):(1)1lykx过定点(,0):2(1)1lykx过定点(,2)证明直线过定点,也是将满足条件的直线整理成以上三种形式之一,再得出结论。练习:1、过点P(3,2)和抛物线232xxy只有一个公共点的直线有()条。A.4B.3C.2D.1分析:作出抛物线232xxy,判断点P(3,2)相对抛物线的位置。解:抛物线232xxy如图,点P(3,2)在抛物线的内部,根据过抛物线内一点和抛物线的对称轴平行或重合的直线和抛物线只有一个交点,可知过点P(3,2)和抛物线232xxy只有一个公共点的直线有一条。故选择D规律提示:含焦点的区域为圆锥曲线的内部。(这里可以用公司的设备画图)一、过一定点P和抛物线只有一个公共点的直线的条数情况:(1)若定点P在抛物线外,则过点P和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线;6(2)若定点P在抛物线上,则过点P和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;(3)若定点P在抛物线内,则过点P和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有一个交点。二、过定点P和双曲线只有一个公共点的直线的条数情况:(1)若定点P在双曲线内,则过点P和双曲线只有一个公共点的直线有2条:和双曲线的渐近线平行的直线和双曲线只有一个公共点;(2)若定点P在双曲线上,则过点P和双曲线只有一个公共点的直线有3条:一条切线,2条和渐近线平行的直线;(3)若定点P在双曲线外且不在渐近线上,则过点P和双曲线只有一个公共点的直线有4条:2条切线和2条和渐近线平行的直线;(4)若定点P在双曲线外且在一条渐近线上,而不在另一条渐近线上,则过点P和双曲线只有一个公共点的直线有2条:一条切线,一条和另一条渐近线平行的直线;(5)若定点P在两条渐近线的交点上,即对称中心,过点P和双曲线只有一个公共点的直线不存在。题型二:弦的垂直平分线问题弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。例题2、过点T(-1,0)作直线l与曲线N
本文标题:圆锥曲线概念归纳及题型总结
链接地址:https://www.777doc.com/doc-4249226 .html