您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 勾股定理知识点及典型例题
八下第18章《勾股定理》勾股定理知识点导航一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。2.勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。)*附:常见勾股数:3,4,5;6,8,10;9,12,15;5,12,133.判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。(2)有两个角互余的三角形是直角三角形。用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。5.勾股定理的作用:(1)已知直角三角形的两边求第三边。(2)已知直角三角形的一边,求另两边的关系。(3)用于证明线段平方关系的问题。(4)利用勾股定理,作出长为n的线段6、2、勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法cbaHGFEDCBAbacbaccabcababccbaEDCBA7、错误的描述方法:“当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形勾股定理:(一)结合三角形:1.已知ABC的三边a、b、c满足0)()(22cbba,则ABC为三角形2.在ABC中,若2a=(b+c)(b-c),则ABC是三角形,且903.在ABC中,AB=13,AC=15,高AD=12,则BC的长为4、已知2512yxx与25102zz互为相反数,试判断以x、y、z为三边的三角形的形状。5、.已知:在ABC中,三条边长分别为a、b、c,a=12n,b=2n,c=12n(n1)试说明:C=90。6.若ABC的三边a、b、c满足条件2acbacb26241033822,试判断ABC的形状。7.已知,0)10(8262cba则以a、b、c为边的三角形是(二)、实际应用:1.梯子滑动问题:(1)一架长2.5m的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m(如图),如果梯子的顶端沿墙下滑0.4m,那么梯子底端将向左滑动米第1题图第2题图第3题图(2)如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离1米,(填“大于”,“等于”,或“小于”)(3)如图,梯子AB斜靠在墙面上,AC⊥BC,AC=BC,当梯子的顶端A沿AC方向下滑x米时,梯足B沿CB方向滑动y米,则x与y的大小关系是()A.X+yB.xyC.xyD.不能确定(4)小明想知道学校旗杆的高度,他发现旗杆上的绳子吹到地面上还多1m,当他把绳子的下端拉开5米后,发现绳子下端刚好触到地面,试问旗杆的高度为米2.直角边与斜边和斜边上的高的关系:直角三角形两直角边长为a,b,斜边上的高为h,则下列式子总能成立的是()A.2babB.2222hbaC.hba111D.222111hba变:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,设AB=c,AC=b,BC=a,CD=h。求证:(1)222111hba(2)hcba(3)以hchba,,为三边的三角形是直角三角形试一试:(1)只需证明1)11(222bah,从左边推到到右边(2)22hcba(3)222hchha,注意面积关系chab的应用86ACBDABC3.爬行距离最短问题:1.如图,一个无盖的正方体盒子的棱长为10cm,得到1C处有一只昆虫甲,在盒子的内部有一只昆虫乙(盒壁的忽略不计)(1)假设昆虫甲在顶点1C处静止不动,如图a,在盒子的内部我们先取棱1BB的中点E,再连结AE、1EC,昆虫乙如果沿途径1CEA爬行,那么可以在最短的时间内捕捉到昆虫甲,仔细体会其中的道理,并在图b中画一条路径,使昆虫乙从顶点A沿这条路爬行,同样可以在最短的时间内捕捉到昆虫甲。(2)如图b,假设昆虫甲从点1C以1厘米/秒的速度在盒子的内部沿CC1向下爬行,同时昆虫乙从顶点A以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多少时间才能捕捉到昆虫甲?试一试:对于(2),当昆虫甲从顶点沿棱CC1向顶点C爬行的同时,昆虫乙可以沿不同的路径爬行,利用勾股定理建立时间方程,通过比较得出昆虫乙捕捉到昆虫甲的最短时间2.如图,一块砖宽AN=5㎝,长ND=10㎝,CD上的点F距地面的高FD=8㎝,地面上A处的一只蚂蚁到B处吃食,要爬行的最短路线是cm3.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是分米?4.如图,一只蚂蚁沿边长为a的正方体表面从点A爬到点B,则它走过的路程最短为()A.a3B.a21C.a3D.a5BAQNMP5、如图,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3)6、如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟?7葛藤是一种刁钻的植物,它自己腰杆不硬,为了争夺雨露阳光,常常饶着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线,总是沿着短路线—盘旋前进的。难道植物也懂得数学吗?如果阅读以上信息,你能设计一种方法解决下列问题吗?如果树的周长为3cm,绕一圈升高4cm,则它爬行路程是多少厘米?如果树的周长为8cm,绕一圈爬行10cm,则爬行一圈升高多少厘米?如果爬行10圈到达树顶,则树干高多少厘米?8、如图,A、B是笔直公路l同侧的两个村庄,且两个村庄到直路的距离分别是300m和500m,两村庄之间的距离为d(已知d2=400000m2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小。问最小是多少?4、实际问题1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树离地面的高度是米。2.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是____________米,水平距离是米。3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是。4.如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为。5、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?ABl5、求边长:1.如图所示,在四边形ABCD中,∠BAD=900,∠DBC=900,AD=3,AB=4,BC=12,求CD。6、方向问题:1.有一次,小明坐着轮船由A点出发沿正东方向AN航行,在A点望湖中小岛M,测得∠MAN=30°,当他到B点时,测得∠MBN=45°,AB=100米,你能算出AM的长吗?2.一轮船在大海中航行,它先向正北方向航行8km,接着,它又掉头向正东方向航行15千米.⑴此时轮船离开出发点多少km?⑵若轮船每航行1km,需耗油0.4升,那么在此过程中轮船共耗油多少升?MABN7、折叠问题:1.如图,矩形纸片ABCD的长AD=9㎝,宽AB=3㎝,将其折叠,使点D与点B重合,那么折叠后DE的长是多少?2.如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F。(1)试说明:AF=FC;(2)如果AB=3,BC=4,求AF的长3.如图,在长方形ABCD中,DC=5,在DC边上存在一点E,沿直线AE把△ABC折叠,使点D恰好在BC边上,设此点为F,若△ABF的面积为30,求折叠的△AED的面积4.如图所示,有一个直角三角形纸片,两直角边AC=6㎝,BC=8㎝,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?DCBAFE5.如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于()A.425B.322C.47D.356、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落在CD边上的点G处,求BE的长.8、利用勾股定理测量长度如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.9、旋转问题1、如图,P是等边三角形ABC内一点,PA=2,PB=23,PC=4,求△ABC的边长。2、如图1-3-11,有一块塑料矩形模板ABCD,长为8cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.3、如图,正方形ABCD中,E是BC边上的中点,F是AB上一点,且14FBAB,那么△DEF是直角三角形吗?为什么?
本文标题:勾股定理知识点及典型例题
链接地址:https://www.777doc.com/doc-4260134 .html