您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > PPT模板库 > 2018年春华师版八年级数学第19章-矩形、菱形与正方形-教案
第19章矩形、菱形与正方形19.1矩形1.矩形的性质【知识与技能】了解矩形的有关概念,理解并掌握矩形的有关性质【过程与方法】经过探索矩形的概念和性质的过程,发展学生合情推理意识,掌握几何思维方法【情感态度】培养严谨的推理能力以及自主合作精神;体会逻辑推理的思维价值【教学重点】掌握矩形的性质,并学会应用【教学难点】理解矩形的特殊性一、情境导入,初步认识收集有关长方形的图片,让学生进行感性认识,引入新课——矩形.【教学说明】让学生体会到数学来源于生活,找到数学的价值.二、思考探究,获取新知探究:矩形的性质1.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察.不管怎么拉,它还是一个平行四边形吗?为什么?(演示拉动过程如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?【归纳结论】矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).3.让学生观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.思考矩形还具有哪些特殊的性质?为什么?【版权所有:21教育】【教学说明】采用观察、操作、交流、演绎的方法来解决重点,突破难点.【归纳结论】矩形性质1矩形的四个角都是直角.矩形性质2矩形的对角线相等.4.矩形是轴对称图形吗?如果是,它有几条对称轴?【教学说明】引导学生尽可能多的发现结论,养成善于观察的好习惯.三、运用新知,深化理解1.已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.21*cnjy*com分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴OA=AB=4cm.∴矩形的对角线长AC=BD=2OA=2×4=8(cm).2.已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:设AD=xcm,则对角线BP长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2,解得x=6.则AD=6cm.“直角三角形斜边上的高”是一个基本条件,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE×DB=AD×AB,解得AE=4.8cm.3.已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.【教学说明】给予学生足够的时间,让学生先独立思考后,小组合作,由不同学生表述自己的不同思路,展示不同的方法.使学生能做一题会一类,熟知矩形中的基本图形.4.若矩形一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为22或20cm.分析:本题需分两种情况解答即矩形的一个角的平分线分一边为4cm和3cm,或者矩形的角平分线分一边为3cm和4cm.当矩形的一个角的平分线分一边为4cm和3cm时,矩形的周长为2×(3+4)+2×4=22cm;当矩形的角平分线分一边为3cm和4cm时,矩形的周长为2×(3+4)+2×3=20cm.解:分两种情况当矩形的一个角的平分线分一边为4cm和3cm时,矩形的周长为2×(3+4)+2×4=22cm;当矩形的角平分线分一边为3cm和4cm时,矩形的周长为2×(3+4)+2×3=20cm.【教学说明】本题考查的是基本的矩形性质,学生需要注意的是分两种情况作答即可.四、师生互动,课堂小结1.师生回顾矩形的性质.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材P101练习.2.完成同步练习册中本课时的练习.本节课以“平行四边形变形为矩形的过程”的演示引入课题,将学生视线集中在数学图形上,思维集中在数学思考上,更好地突出了观察的对象,使学生容易把握问题的本质.真实、自然、和谐,体现了数学学习的内在需要,加强了学生对知识之间的理解和把握,形成了和本质相关的认知结构.2.矩形的判定【知识与技能】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【过程与方法】通过探索矩形判定的过程,培养学生实验探索的意识;形成几何分析思路和方法.【情感态度】培养推理能力,会根据需要选择有关的结论证明,体会来自于实践的需要.【教学重点】理解并掌握矩形的判定方法及其证明,掌握判定的应用.【教学难点】定理的证明方法及运用.一、情境导入,初步认识1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?【教学说明】通过这些问题,教师可以检查学生学习的情况.4.事例引入:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?【教学说明】事例引入,激发学生的兴趣.二、思考探究,获取新知1.矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论,并与同伴交流.【归纳结论】有三个角是直角的四边形是矩形.2.动手操作:拿一个活动的平行四边形教具,轻轻拉动一个点.思考:(1)随着∠a的变化,两条对角线的长度将发生怎样的变化?(2)当两条对角线的长度相等时,平行四边形有什么特征?你能证明吗?【教学说明】让学生动脑思考,动手操作.为下面的学习做好知识上的准备;【归纳结论】对角线相等的平行四边形是矩形三、运用新知,深化理解1._________________的平行四边形是矩形._________________的四边形是矩形.2.下列说法正确的是()A.一组对边平行且相等的四边形是矩形B.一组对边平行且有一个角是直角的四边形是矩形C.对角线互相垂直的平行四边形是矩形D.一个角是直角且对角线互相平分的四边形是矩形分析:矩形的判定定理有:(1)对角线相等的平行四边形是矩形(2)有三个角是直角的四边形是矩形;据此判断.解:A、一组对边平行且相等的四边形是平行四边形,故A错误;B、一组对边平行且相等有一个是直角的四边形是矩形,也有可能为梯形,故B错误;C、对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”),故C错误;D、对角线互相平分且相等的四边形是矩形,故D正确.【教学说明】学生口答展示第1、2道题,训练学生的语言表达能力,3.如图所示,□ABCD的四个内角的平分线分别相交于E,F,G,H,试说明四边形EFGH是矩形.解:∵∠HAB+∠HBA=90°∴∠H=90°同理可求得∠HEF=∠F=∠FGH=90°∴四边形EFGH是矩形.4.(一题多解题)如图所示,△ABC为等腰三角形,AB=AC,CD⊥AB于D,P为BC上的一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F,则有PE+PF=CD,你能说明为什么吗?21教育网解法一:能.如图所示,过P点作PH⊥DC,垂足为H,可得四边形PHDE是矩形∴PE=DH,PH∥BD∴∠HPC=∠B又∵AB=AC∴∠B=∠ACB∴∠HPC=∠FCP.又∵PC=CP,∠PHC=∠CFP=90°∴△PHC≌△CFP∴PF=HC∴DH+HC=PE+PF即:DC=PE+PF.解法二:能.延长EP,过C点作CH⊥EP,垂足为H,如图所示,∵可得四边形HEDC是矩形∴EH=PE+PH=DC,CH∥AB∴∠HCP=∠B.∴△PHC≌△PFC∴PH=PF∴PE+PF=DC.【教学说明】到黑板展示第3、4道题,有多种证明方法的题目学生口答展示,教师予以总结.既训练了学生的语言表达能力,也训练了学生的书写能力和分析问题的能力.21·cn·jy·com四、师生互动,课堂小结1.师生共同回顾矩形有哪些判定定理?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题19.1”中的第1、2、3、5题.2.完成本课时对应练习.本节课用逻辑推理的方法对以前曾用直观感知,操作说明而得到的矩形判定进行重新研究,让学生充分感受到逻辑推理是研究几何的重要方法.尽可能地提供多种机会让学生自己去理解、感悟、体验,从而加深学生对数学的认识,激发学生的数学兴趣,提高学生的数学水平.菱形的性质【知识与技能】理解菱形的概念,掌握菱形的性质【过程与方法】经过探索菱形的性质和基本概念的过程,在操作、观察、分析过程中培养学生思维意识,体会几何说理的基本方法.2-1-c-n-j-y【情感态度】培养学生主动探究的习惯和严密的思维意识、审美观、价值观【教学重点】理解并掌握菱形的性质【教学难点】形成合情推理的能力一、情境导入,初步认识分四人小组,先在组内交流自己收集的有关菱形的图片,实物等.然后进行全班性交流.引入定义:有一组邻边相等的平行四边形叫做菱形.【教学说明】认识菱形,感受菱形的生活价值.二、思考探究,获取新知教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是平行四边形的特例,因此,菱形也具有平行四边形的所有性质.【教学说明】通过教师的教具操作感受菱形的定义.如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.思考:1.这是一个什么样的图形呢?2.有几条对称轴?3.对称轴之间有什么位置关系?4.菱形中有哪些相等的线段?【教学说明】充分地应用直观学具的制作,发现菱形所具有的性质,激发课堂学习的热情.【归纳结论】菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直.三、运用新知,深化理解1.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为(A)A.15B.1523C.7.5D.153【教学说明】本题考查有一个角是60°的菱形,有一条对角线等于菱形的边长.2.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC且DE交BC的延长线于点E.求证:DE=12BE.分析:由四边形ABCD是菱形,∠ABC=60°,易得BD⊥AC,∠DBC=30°,又由DE∥AC,即可证得DE⊥BD,由直角三角形斜边上的中线等于斜边的一半,即可证得DE=12BE.21*cnjy*com证明:方法一:如下图,连接BD,∵四边形ABCD是菱形,∠ABC=60°,∴BD⊥AC,∠DBC=30°,∵DE∥AC,∴DE⊥BD,即∠BDE=90°,∴DE=12BE.方法二:∵四边形ABCD是菱形,∠ABC=60°,∴AD∥BC,AC=AD,∵AC∥DE,∴四边形ACED是菱形,∴DE=CE=AC=AD,又四边形ABCD是菱形,∴AD=AB=BC=CD,∴BC=EC=DE,即C为BE中点,∴DE=BC=12BE.【教学说明】此题考查了菱形的性质,直角三角形的性质等知识.此题难度不大,注意数形结合思想的应用.3.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.【来源:21cnj*y.co*m】(1)求∠ABD的度数;(2)求线段BE的长.分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三
本文标题:2018年春华师版八年级数学第19章-矩形、菱形与正方形-教案
链接地址:https://www.777doc.com/doc-4260231 .html