您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 追击和相遇问题 课件
追击与相遇问题(一)追击1、v甲<v乙甲一定能追上乙,v甲=v乙的时刻为甲、乙有最大距离的时刻1、v甲<v乙,S甲乙增大。2、v甲=v乙,S甲乙最大。3、v甲>v乙,S甲乙减小。4、相遇时,S甲乙=0。v/ms-1乙甲t/so6t0物理运动过程1、t<to,s甲乙增大。2、t=to,s甲乙最大。3、t>to,s甲乙减小。4、s甲=s乙相遇。(2)相遇①同向运动的两物体的追击即相遇②相向运动的物体,当各自位移大小之和等于开始时两物体的距离,即相遇3、解题方法(1)画清行程草图,找出两物体间的位移关系(2)仔细审题,挖掘临界条件,联立方程(3)利用二次函数求极值、图像法、相对运动知识求解一、解题思路讨论追击、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置的问题。1、两个关系:时间关系和位移关系2、一个条件:两者速度相等两者速度相等,两者距离最大的临界条件,是分析判断的切入点。例1:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车。试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?x汽x自△x二、例题分析方法一:公式法当汽车的速度与自行车的速度相等时,两车之间的距离最大。设经时间t两车之间的距离最大。则自汽vatvssavt236自x汽x自△xmmmattvxxxm62321262122自汽自那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?221aTTv自savt42自smaTv/12汽maTs24212=汽方法二:图象法解:画出自行车和汽车的速度-时间图线,自行车的位移x自等于其图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其图线与时间轴围成的三角形的面积。两车之间的距离则等于图中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三角形的面积之差最大。v/ms-1自行车汽车t/so6t03tan60tmmxm66221V-t图像的斜率表示物体的加速度当t=2s时两车的距离最大st20动态分析随着时间的推移,矩形面积(自行车的位移)与三角形面积(汽车的位移)的差的变化规律α方法三:二次函数极值法设经过时间t汽车和自行车之间的距离Δx,则x汽x自△x2223621ttattvx自时当s2)23(26tm6)23(462mx那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?02362ttxsT4smaTv/12汽maTs24212=汽
本文标题:追击和相遇问题 课件
链接地址:https://www.777doc.com/doc-4270285 .html