您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 18.2.3正方形的性质与判定练习题
18.2.3正方形的性质与判定练习题一、填空题1、如图,E是正方形ABCD的对角线BD上一点,且BE=BC,则∠ACE=°.2、如图,四边形ABDC是正方形,延长CD到点E,使CE=CB,则∠AEC=°.3、如图,正方形ABCD中,点E在BC的延长线上,AE平分∠DAC,则下列结论:①∠E=22.5°;②∠AFC=112.5°;③∠ACE=135°;④AC=CE;⑤AD∶CE=1∶2.其中正确的有个.4、如图,等边△EDC在正方形ABCD内,连结EA、EB,则∠AEB=°;∠ACE=°.5、已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是°.6、如图,四边形ABCD是正方形,E是边CD上一点,若△AFB经过逆时针旋转角θ(0°<θ<180°)后,与△AED重合,则θ值为°.第6题图第7题图第8题图第9题图7、已知正方形ABCD中,点E在边DC上,DE=2,EC=1,把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为___________.8、如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.9、如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B处,点A对应点为A,且CB=3,则CN=;AM的长是.10、正方形的面积是31,则其对角线长是________.11、如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是.12、如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、An分别是正方形的中心,则n个这样的正方形重叠部分的面积和为.第12题图第13题图13、边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB′C′D′,两图叠成一个“蝶形风筝”(如图所示重叠部分),则这个风筝的面积是.14、如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是.15、如右图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确的结论是.(填序号)第1题图第2题图第3题图第4题图O2O1第11题图第14题图16、如右图,四边形ABCD为正方形,以AB为边向正方形外作等边△ABE,CE与DB相交于点F,则AFD=。二、解答题1、如图1:正方形ABCD中,AC=10,P是AB上任意一点,PE⊥AC于E,PF⊥BD于F,则PE+PF=.可以用一句话概括:正方形边上的任意一点到两对角线的距离之和等于.思考:如若P在AB的延长线时,上述结论是否成立?若不成立,请在图2中画出图形,写出你的结论,并加以说明.图22、(1)如图1,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确结论的序号是.思考:(2)当点P在DB的长延长线上时,请在图2中补充完整,并思考(1)中AP与EF的关系结论是否依旧成立?若成立,请给出证明;若不成立,请说明理由.图2图13、已知Rt△ABC中,∠C=90°,CD平分∠ACB交AB于D,DF//BC,DE//AC.求证:四边形DECF为正方形.4、如图,正方形ABCD中,E、F、G分别是AD、AB、BC上的点,且AE=FB=GC.试判断△EFG的形状,并说明理由.5、E为正方形ABCD内一点,且△EBC是等边三角形,求∠EAD的度数.6、如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB与DQ交于M,BP与CQ交于E,CP与DQ交于F.求证:PM=QM.7、P为正方形ABCD内一点,PA=1,PB=2,PC=3,求∠APB的度数.8、如图,在正方形ABCD中,F是CD的中点,E是BC边上一点,且AF平分∠DAE,求证:AE=EC+CD.9、如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.试判断PE与PD的关系.10、如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.11、如图,已知□ABCD中,对角线ACBD,交于点O,E是BD延长线上的点,且ACE△是等边三角形.(1)求证:四边形ABCD是菱形;(2)若2AEDEAD,求证:四边形ABCD是正方形.12、如图,在正方形ABCD中,P为BC上一点,Q为CD上一点,(1)若∠PAQ=45°,求证:PQ=BP+DQ;(2)若PQ=BP+DQ,求∠PAQ的度数.13、如图,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′D′的顶点A′与点O重合,A′B′交BC于点E,A′D′交CD于点F.(1)求证:OE=OF;(2)若正方形ABCD的边长为1,求两个正方形重叠部分的面积;(3)若正方形A′B′C′D′绕着O点旋转,EF的长度何时最小,并求出最小值.ECDBAO14、如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.如图②,若M为AD边的中点,(1)△AEM的周长=cm;(2)求证:EP=AE+DP;15、如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;(无需证明)(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取一种情况证明你的判断.16、(1)如图(1),已知正方形ABCD和正方形CGEF(CGBC),B、C、G在同一直线上,M为线段AE的中点。探究:线段MD、MF的关系。(2)如图(2),若将正方形CGEF绕点C逆时针旋转45,使得正方形CGEF对角线CE在正方形ABCD的边BC的延长线上,M为AE的中点。试问:(1)中探究的结论是否还成立?若成立,请证明,若不成立,请说明理由。图1图217、以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状是;(直接写出结果)(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=(0°<<90°),①试用含的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.18、已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?
本文标题:18.2.3正方形的性质与判定练习题
链接地址:https://www.777doc.com/doc-4272898 .html