您好,欢迎访问三七文档
常用公式表1、求导法则:(1)(u+v)/=u/+v/(2)(u-v)/=u/-v/(3)(cu)/=cu/(4)(uv)/=uv/+u/v(5)2vvuvuvu2、基本求导公式:(1)(c)/=0(2)(xa)/=ax1a(3)(ax)/=axlna(4)(ex)/=ex(5)(㏒ax)/=axln1(6)(lnx)/=x1(7)(sinx)/=cosx(8)(cosx)/=-sinx(9)(tanx)/=2)(cos1x=(secx)2(10)(cotx)/=-2)(sin1x=-(cscx)2(11)(secx)/=secx*tanx(12)(cscx)/=-cscx*cotx(13)(arcsinx)/=211x(14)(arccosx)/=-211x(15)(arctanx)/=211x(16)211cotxxarc3、基本积分公式(1)kdx=kx+c(2)Cxadxxaa111(3)cxdxxln1(4)Caadxaxxln(5)cedxexx(6)Cxxdxcossin(7)Cxxdxsincos(8)Cxdxxxdxtancos1sec22(9)cxdxxxdxcotsin1csc22(10)cxdxxarcsin112(11)cxdxxarctan112Cxxxdxtanseclnsec1Cxxxdxcotcsclncsc2Caxadxxaarctan11322Caxdxxaarcsin1422Caxaxadxaxln211522(1)babadttfdxxf)()((2)aadxxf0)((3)dxxfdxxfabba(4)bacabcdxxfdxxfdxxf)()()(4、积分定理:(1)xfdttfxa(2)xaxafxbxbfdttfxbxa(3)若F(x)是f(x)的一个原函数,则)()()()(aFbFxFdxxfbaba5、积分方法baxxf1;设:tbax222xaxf;设:taxsin22axxf;设:taxsec22xaxf;设:taxtan3分部积分法:vduuvudv
本文标题:积分求导公式表
链接地址:https://www.777doc.com/doc-4312956 .html