您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 动车组车门故障分析及改进方法
I摘要车门故障一直是影响动车组正常运行的主要故障之一,本文通过介动车组车门的工作原理,针对动车组车门故障的几起典型故障案例,按机械类、电气类等故障引发的原因分类进行分析总结,并就零部件专业检修、动车组运用检修提出对策措施。2013年年底,全路动车组在运营过程中发生多起车门故障,严重影响了铁路运输正常秩序,成为影响动车组运行安全的极大隐忧,为降低动车组车门系统故障率,确保运输秩序,通过梳理车门故障记录,分析查找共性问题,并以典型案例为突破点进行分析研究,制定完善动车组检修检修整治方法。关键词;动车组车门故障分析处理措施。II目录摘要..............................................................................................................................................I第1章绪论.......................................................................................................................................11.2动车组的发展....................................................................................................................3第2章塞拉门介绍...........................................................................................................................62.1塞拉门系统组成................................................................................................................62.2塞拉门主要功能简介........................................................................................................72.2.2塞拉门控制....................................................................................................................72.2.3拓展功能................................................................................................................92.3典型故障原因及分析...............................................................................................................102.3.1动车组运行中通过司机室监控屏显示的几种故障现象........................................122.4动车组车门常见故障分析.......................................................................................13第3章动车组车门系统的日常管理和维护...............................................................................153.1减少动车组运行中车门故障的数量.......................................................................163.2加强对相关部件清洁和润滑...................................................................................163.3对策措施...................................................................................................................17致谢................................................................................................................................................19参考文献:.......................................................................................................................................201第1章绪论随着世界经济的迅速发展,人们生活中的交通不仅变得越来越便利,同时还给社会发展带来了巨大的帮助。在这其中,动车因为自身具有安全和高效的工作特点,成为了社会各界共同关注的问题,其中单翼塞拉门与双翼对开门一直是动车中对应的自动门系统最为典型的两种结构。本文将目前新型动车中自动门系统自身工作原理以及结构性能进行了一次阐述,并且以此作为基础对塞拉门方面的电气控制系统进行了研究。当今,社会的发展与人们周边的交通环境是分不开的,交通方面的问题一直是自古以来人们共同关注的问题。由于最近几年交通事故在国内引起的社会反映非常强烈,所以交通状况也逐渐成为了人们在生活中经常谈到的话题。在动车方面,因为其自身所具有的快速以及安全等特点,自从出现以来就一直被社会各界的人们所喜爱。本文对动车中塞拉门电气相关控制系统进行了一次分析,并将其中存在的相关问题进行了解决。动车组最先是从德国与法国这两个国家开始进行研究的,在1903年,世界第一辆动车组在德国诞生。由于德国和法国自身国土面积相对较小,同时欧洲各国自身铁路路基所具有的承重能力相关标准有着巨大的差异,因此在德国以及整个西方国家之中,动车组的发展速度一直都比较缓慢。但是在日本,人们在1964年的时候首先进行了高速新干线的建设与开通,直至今日,日本高速机车方面都在不断地发展着,其传动方式也一直在不断地发生着变化,并且进行着持续地更新和进步,对应的动车组速度也从每小时210千米逐渐提升到了每小时300千米。而和日本情况不同的是,德国与法国两个国家在对动车进行研究的时候,其主要的研究内容是以动力牵引相关模式为主的,法国主要研究的为动力集中式,并且对应的当地第一条投入运行的铁路干线在1983年出现,在动力集中牵引这一作用下,动车组自身速度能够达到每小时270千米,而在1990年,其最高的运行速度已经达到每小时300千米。在德国,人们于1962年所研制出的客车能够达到每小时160公里,在1977年之后便提高到了每小时200公里。在1989年的时候,德国终于开始对高速列车进行制造,并且在1990年的时候这种列车被投入使用。至今,德国已经研制出第三代具有动力分散功能的高速列车,其车速最高2能够达到每小时300千米。在这之中,动车组自身车门都是电动车门,是通过系统进行统一控制的,人们在上下车以及乘车的过程中如果挤靠车门,那么可能会发生严重事故。现在在国内,大部分动车所使用的都是塞拉门式的电气控制相关系统。1.1动车组简介动车组,亦称多动力列车组合(MultipleUnits,MU),电力动车组叫做EMU,内燃动车组叫DMU,把动力装置分散安装在每节车厢上。动车的动力来源分布在列车各个车厢上的发动机,而不是集中在铁路机车上。电力动车组又分为直流电力动车组和交流电力动车组两种。动车一般指自带动力的轨道车辆,区别于拖车。动车和拖车一起构成动车组。动车类似机车要牵引拖车,因此,某动车的时速肯定大大高于它所在动车组的时速。动车组有两种牵引动力的分布方式,一是动力分散,二是动力集中。但实际上,动力集中式的动车组严格上来说只能算是普通的机车+车辆模式的翻版再升级。动车组是城际和市郊铁路实现小编组、大密度的高效运输工具,以其编组灵活、方便、快捷、安全,可靠、舒适为特点备受世界各国铁路运输和城市轨道交通运输的青睐。我们通常看到的电力机车和内燃机车,其动力装置都集中安装在机车上,在机车后面挂着许多没有动力装置的客车车厢。如果把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆便叫做动车。而动车组就是几节自带动力的车辆加几节不带动力的车辆编成一组,就是动车组。带动力的车辆叫动车,不带动力的车辆叫拖车。动车组有两种牵引动力的分布方式,一种叫动力分散,一种叫动力集中。动力分散电动车组的优点是,动力装置分布在列车不同的位置上,能够实现较大的牵引力,编组灵活。由于采用动力制动的轮对多,制动效率高,且调速性能好,制动减速度大,适合用于限速区段较多的线路。另外,列车中一节动车的牵引动力发生故障对全列车的牵引指标影响不大。动力分散的电动车组的缺点是:牵引力设备的数量多,总重量大。动力集中的电动车组也有其优点,动力装置集中安装在2~3节车上,检查维修比较方便,电气设备的总重量小于动力分散的电动车组。3中国的动车组列车分为三大级别:高速动车组(时速250及其以上,标号G,主要对应高速铁路),目前还没有上限时速;一般动车组或中速的(标号D,时速160和200公里,主要对应快速铁路)、低速动车组(南车青岛公司把技术能力下延而研究时速140公里的,以适应城市轻轨)。2007年,动车组开进了北京站、兴城站。图1动车组展示中国的动车技术时速上升很快,株洲南车集团动车组技术仅用了不到4年就从时速160公里起步到2008年实现时速300公里的大飞跃,后来的试验时速接连突破一个个台阶。另外,2015年8月它中国出口马来西亚的米轨铁路动车组创下了时速176公里的米轨铁路世界速度之最。另外,种类发展多,如研制高寒型、城际型如2013年中国首列时速160公里城际动车组下线并准备时速下延以覆盖更多1.2动车组的发展动车发明了,单节车厢会动了。由动车编成的动车列车和与无动力车厢混编的列车也有了。编组灵活,加速能力强,有些动车、动车列车或混编列车甚至两头都有司机室,不用专门的调车作业就能往返运行。早期的动车各节自成体系,不能相互操作,列车中每节动车都要有人操作。然而通勤线路九曲十八弯,通勤列车又走走停停,即使是经验丰富的老司机之间的配合也难免会出差错,一旦前车猛然减速而后车刚好加速,又寸到弯道上。4频繁的脱轨事故使得动车列车编组只能很小,这大大扼杀了动车编组灵活的优势。好在车到山前自有路,一项来自新型电力机车的技术──重联──砸碎了动车发展的枷锁。重联,指用特定手段将兼容机车的联系在一起,由一个司机室操纵。最常见的手段是用一组重联电缆连接多台同系列机车的操控系统或动力系统。动车由电力机车发展而来,产生于电力机车的重联技术也很快用于动车列车。从此,动车列车与无动力车厢混编的列车可以由一个司机全面操控了。从此,动车组诞生了。图2动车组展示二战结束,内燃机车也能重联了,内燃动车组出现。70年代,法国试制了燃气轮机高速动车组──TGV-0。80年代,高速铁路网在欧洲延伸,风驰电掣的各系TGV以300km/h的速度成为法国人的骄傲。90年代,TGV试验速度突破500km/h。新世纪,TGV试验速度突破570km/h。中国CRT实验速
本文标题:动车组车门故障分析及改进方法
链接地址:https://www.777doc.com/doc-4324752 .html