您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 2014人教版九年级上册实际问题与二次函数第一课时
乌市第58中-202462-4xy⑴若-3≤x≤3,该函数的最大值、最小值分别为()、()。⑵又若0≤x≤3,该函数的最大值、最小值分别为()、()。求函数的最值问题,应注意什么?55555132、图中所示的二次函数图像的解析式为:13822xxy1、求下列二次函数的最大值或最小值:⑴y=-x2+2x-3;⑵y=-x2+4x1234576891211223345xy0会得到哪条抛物线?个单位,再向下平移个单位后,向右平移将抛物线44212xy4)4(212xy同学们,今天就让我们一起去体会生活中的数学给我们带来的乐趣吧!某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖件,实际卖出件,销额为元,买进商品需付元因此,所得利润为元10x(300-10x)(60+x)(300-10x)40(300-10x)y=(60+x)(300-10x)-40(300-10x)即6000100102xxy(0≤X≤30)6000100102xxy(0≤X≤30)625060005100510522最大值时,yabx可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值。由公式可以求出顶点的横坐标.元\x元\y625060005300所以,当定价为65元时,利润最大,最大利润为6250元在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润60506000356035183522最大时,当yabx答:定价为元时,利润最大,最大利润为6050元3158做一做由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?60006018183004018300602xxxxxy(0≤x≤20)(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。048(4,4)920xy如图,建立平面直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:442xay(0≤x≤8)9200,抛物线经过点4409202a91a44912xy(0≤x≤8)9208yx时,当∵篮圈中心距离地面3米∴此球不能投中若假设出手的角度和力度都不变,则如何才能使此球命中?探究(1)跳得高一点(2)向前平移一点-5510642-2-4-6yx(4,4)(8,3)200,9•在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?0123456789208,9-5510642-2-4-6yX(8,3)(5,4)(4,4)200,90123456789•在出手角度、力度及高度都不变的情况下,则小明朝着篮球架再向前平移多少米后跳起投篮也能将篮球投入篮圈?(7,3)●用抛物线的知识解决运动场上或者生活中的一些实际问题的一般步骤:建立直角坐标系二次函数问题求解找出实际问题的答案生活是数学的源泉,探索是数学的生命线.寄语作业P28:2、3、4抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?lxy0(2,-2)●(-2,-2)●解:设这条抛物线表示的二次函数为由抛物线经过点(-2,2),可得所以,这条抛物线的二次函数为:当水面下降1m时,水面的纵坐标为当时,所以,水面下降1m,水面的宽度为m2axy21a221xy3y3y6x62462∴水面的宽度增加了m
本文标题:2014人教版九年级上册实际问题与二次函数第一课时
链接地址:https://www.777doc.com/doc-4331689 .html