您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 构造函数证明二元不等式
构造函数证明二元不等式一、变相同结构造函数分析单调性例:已知m、n都是正整数,且,1nm证明:mnnm)1()1(已知,,Rba求证.111bbaababa已知函数xxxxfln)(,)()()(afxxfxg,其中)(af表示函数)(xf在ax处的导数,a为正常数.(1)求)(xg的单调区间;(2)对任意的正实数21,xx,且21xx,证明:)()()()()()(11212212xfxxxfxfxfxx;(3)对任意的*Nn,且2n,证明:nnfnln2ln)1(1ln13ln12ln1.(2)(法1)对任意的正实数21,xx,且21xx,取1xa,则),(12xx,由(1)得)()(21xgxg,即)()()()()()(21221111xgxfxxfxfxxfxg,所以,)()()()(11212xfxxxfxf……①;取2xa,则),0(21xx,由(1)得)()(21xgxg,即)()()()()()(22222111xgxfxxfxfxxfxg,所以,)()()()(21212xfxxxfxf……②.综合①②,得)()()()()()(11212212xfxxxfxfxfxx.二、换元后作差构造函数证明已知0ba,求证:22)(2nbnabababll已知函数xxxxfln)(,)()()(afxxfxg,其中)(af表示函数)(xf在ax处的导数,a为正常数.(1)求)(xg的单调区间;(2)对任意的正实数21,xx,且21xx,证明:)()()()()()(11212212xfxxxfxfxfxx;(3)对任意的*Nn,且2n,证明:nnfnln2ln)1(1ln13ln12ln1.对任意的正实数21,xx,且21xx,有)1(21fxxf,)1(12fxxf.由)1(21fxxf,得1ln121212xxxxxx,即0)ln(ln12212xxxxx,所以0)ln(ln)()()()(1221211212xxxxxxfxxxfxf.故)()()()(11212xfxxxfxf.……①;由)1(12fxxf,同理可证)()()()(21212xfxxxfxf综合①②,得)()()()()()(11212212xfxxxfxfxfxx.三、主元法构造函数例.(全国)已知函数xxxgln)(设ba0,证明:2ln)()2(2)()(0abbagbgag.证明:在)2(2)()(bagbgag中以b为主变元构造函数,设)2(2)()()(xagxgagxF,则2lnln)]2([2)()('''xaxxagxgxF.当ax0时,0)('xF,因此)(xF在),0(a内为减函数.当ax时,0)('xF,因此)(xF在),(a上为增函数.从而当ax时,)(xF有极小值)(aF.因为,,0)(abaF所以0)(bF,即.0)2(2)()(bagbgag又设2ln)()()(axxFxG.则)ln(ln2ln2lnln)('xaxxaxxG.当0x时,0)('xG.因此)(xG在),0(上为减函数.因为,,0)(abaG所以0)(bG,即2ln)()2(2)()(abbagbgag已知函数xxxxfln)(,)()()(afxxfxg,其中)(af表示函数)(xf在ax处的导数,a为正常数.(1)求)(xg的单调区间;(2)对任意的正实数21,xx,且21xx,证明:)()()()()()(11212212xfxxxfxfxfxx;(3)对任意的*Nn,且2n,证明:nnfnln2ln)1(1ln13ln12ln1.(2)(法1)对任意的正实数21,xx,且21xx,取1xa,则),(12xx,由(1)得)()(21xgxg,即)()()()()()(21221111xgxfxxfxfxxfxg,所以,)()()()(11212xfxxxfxf……①;取2xa,则),0(21xx,由(1)得)()(21xgxg,即)()()()()()(22222111xgxfxxfxfxxfxg,所以,)()()()(21212xfxxxfxf……②.综合①②,得)()()()()()(11212212xfxxxfxfxfxx.例设Ra,函数)11(,)(2xaxaxxf,若1a,证明45)(xf。解析:本题若直接证明,难度较大;但若采用反客为主法,变更主元,即将函数式看作是关于a的函数,即令,)1()(2xaxag则问题转化为证明当11a时,45)(ag。⑴当1x时,1)(ag,适合45)(ag。⑵当11x时,,)1()(2xaxag)11(a是关于a的一次函数,且012x,函数)(agy在1,1a是减函数,则)1()()1(gagg;欲证45)(ag,即证45)(45ag;只需证45)1(g且45)1(g成立。又)1(gxx124545)21(2x;)1(gxx124545)21(2x。因此原结论成立。“反客为主”已知函数xxxxfln)(,)()()(afxxfxg,其中)(af表示函数)(xf在ax处的导数,a为正常数.(1)求)(xg的单调区间;(2)对任意的正实数21,xx,且21xx,证明:)()()()()()(11212212xfxxxfxfxfxx;(3)对任意的*Nn,且2n,证明:nnfnln2ln)1(1ln13ln12ln1.(2)(法1)对任意的正实数21,xx,且21xx,取1xa,则),(12xx,由(1)得)()(21xgxg,即)()()()()()(21221111xgxfxxfxfxxfxg,所以,)()()()(11212xfxxxfxf……①;取2xa,则),0(21xx,由(1)得)()(21xgxg,即)()()()()()(22222111xgxfxxfxfxxfxg,所以,)()()()(21212xfxxxfxf……②.综合①②,得)()()()()()(11212212xfxxxfxfxfxx.对任意的正实数21,xx,且21xx,有)1(21fxxf,)1(12fxxf.由)1(21fxxf,得1ln121212xxxxxx,即0)ln(ln12212xxxxx,所以0)ln(ln)()()()(1221211212xxxxxxfxxxfxf.故)()()()(11212xfxxxfxf.……①;由)1(12fxxf,同理可证)()()()(21212xfxxxfxf综合①②,得)()()()()()(11212212xfxxxfxfxfxx.
本文标题:构造函数证明二元不等式
链接地址:https://www.777doc.com/doc-4333371 .html