您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > DSP大作业-快速傅立叶变换(FFT)算法实验
《DSP原理及应用》大作业专业:电子信息工程姓名:学号:快速傅立叶变换(FFT)算法实验一、摘要基于CCS的DSP算法仿真实验设计简要介绍了CCS软件的主要功能,利用CCS软件,设计数字信号处理实验课程,实现了FFT算法实验二、引言在当今的数字化时代背景下,DSP控制器以其可靠性高、扩充能力强、可维护性能好,可满足多种场合的应用需要,得到了国内外电子信息界和控制方案支持企业的青睐,被公认为控制实现技术的发展方向。DSP已成为通信、计算机、消费类电子产品等领域的基础器件,被誉为信息社会革命的旗手。三.实验原理1.FFT的原理和参数生成公式:公式(1)FFT运算公式FFT并不是一种新的变换,它是离散傅立叶变换(DFT)的一种快速算法。由于我们在计算DFT时一次复数乘法需用四次实数乘法和二次实数加法;一次复数加法则需二次实数加法。每运算一个X(k)需要4N次复数乘法及2N+2(N-1)=2(2N-1)次实数加法。所以整个DFT运算总共需要4N^2次实数乘法和N*2(2N-1)=2N(2N-1)次实数加法。如此一来,计算时乘法次数和加法次数都是和N^2成正比的,当N很大时,运算量是可观的,因而需要改进对DFT的算法减少运算速度。根据傅立叶变换的对称性和周期性,我们可以将DFT运算中有些项合并。我们先设序列长度为N=2^L,L为整数。将N=2^L的序列x(n)(n=0,1,……,N-1),按N的奇偶分成两组,也就是说我们将一个N点的DFT分解成两个N/2点的DFT,他们又重新组合成一个如下式所表达的N点DFT:一般来说,输入被假定为连续的。当输入为纯粹的实数的时候,我们就可以利用左右对称的特性更好的计算DFT。我们称这样的RFFT优化算法是包装算法:首先2N点实数的连续输入称为“进包”。其次N点的FFT被连续运行。最后作为结果产生的N点的合成输出是“打开”成为最初的与DFT相符合的2N点输入。使用这一思想,我们可以划分FFT的大小,它有一半花费在包装输入O(N)的操作和打开输出上。这样的RFFT算法和一般的FFT算法同样迅速,计算速度几乎都达到了两次DFT的连续输入。下列一部分将描述更多的在TMS320C55x上算法和运行的细节。5.程序流程图:四.实验步骤(一)第一部分1.实验准备:-设置软件仿真模式。-启动CCS。2.打开工程。浏览程序,工程目录为C:\ICETEK-VC5509-EDULab\Lab0503-FFT\FFT.pjt。3.编译并下载程序。4.打开观察窗口选择菜单View-Graph-Time/Frequency…5.清除显示在以上打开的窗口中单击鼠标右键,选择弹出式菜单中“ClearDisplay”功能。6.设置断点在程序FFT.c中有注释“breakpoint”的语句上设置软件断点。7.运行并观察结果。⑴选择“Debug”菜单的“Animate”项,或按F12键运行程序。⑵观察“TestWave”窗口中时域图形;⑶在“TestWave”窗口中点击右键,选择属性,更改图形显示为FFT。观察频域图形。⑷观察“FFT”窗口中的由CCS计算出的正弦波的FFT。8.退出CCS。9.实验结果10.源代码(C语言)#includemyapp.h#includeICETEK-VC5509-EDU.h#includescancode.h#includemath.h#definePI3.1415926#defineSAMPLENUMBER128voidInitForFFT();voidMakeWave();intINPUT[SAMPLENUMBER],DATA[SAMPLENUMBER];floatfWaveR[SAMPLENUMBER],fWaveI[SAMPLENUMBER],w[SAMPLENUMBER];floatsin_tab[SAMPLENUMBER],cos_tab[SAMPLENUMBER];main(){inti;InitForFFT();MakeWave();for(i=0;iSAMPLENUMBER;i++){fWaveR[i]=INPUT[i];fWaveI[i]=0.0f;w[i]=0.0f;}FFT(fWaveR,fWaveI);for(i=0;iSAMPLENUMBER;i++){DATA[i]=w[i];}while(1);//breakpoint}voidFFT(floatdataR[SAMPLENUMBER],floatdataI[SAMPLENUMBER]){intx0,x1,x2,x3,x4,x5,x6,xx;inti,j,k,b,p,L;floatTR,TI,temp;for(i=0;iSAMPLENUMBER;i++){x0=x1=x2=x3=x4=x5=x6=0;x0=i&0x01;x1=(i/2)&0x01;x2=(i/4)&0x01;x3=(i/8)&0x01;x4=(i/16)&0x01;x5=(i/32)&0x01;x6=(i/64)&0x01;xx=x0*64+x1*32+x2*16+x3*8+x4*4+x5*2+x6;dataI[xx]=dataR[i];}for(i=0;iSAMPLENUMBER;i++){dataR[i]=dataI[i];dataI[i]=0;}for(L=1;L=7;L++){/*for(1)*/b=1;i=L-1;while(i0){b=b*2;i--;}/*b=2^(L-1)*/for(j=0;j=b-1;j++)/*for(2)*/{p=1;i=7-L;while(i0)/*p=pow(2,7-L)*j;*/{p=p*2;i--;}p=p*j;for(k=j;k128;k=k+2*b)/*for(3)*/{TR=dataR[k];TI=dataI[k];temp=dataR[k+b];dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p];dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p];dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p];dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p];}/*ENDfor(3)*/}/*ENDfor(2)*/}/*ENDfor(1)*/for(i=0;iSAMPLENUMBER/2;i++){w[i]=sqrt(dataR[i]*dataR[i]+dataI[i]*dataI[i]);}}/*ENDFFT*/voidInitForFFT(){inti;for(i=0;iSAMPLENUMBER;i++){sin_tab[i]=sin(PI*2*i/SAMPLENUMBER);cos_tab[i]=cos(PI*2*i/SAMPLENUMBER);}}voidMakeWave(){inti;for(i=0;iSAMPLENUMBER;i++){INPUT[i]=sin(PI*2*i/SAMPLENUMBER*3)*1024;}}(二)第二部分1.程序参数说明externvoidInitC5402(void)externvoidOpenMcBSP(void)externvoidCloseMcBSP(void)externvoidREADAD50(void)externvoidWRITEAD50(void)voidkfft(pr,pi,n,k,fr,fi,l,il):基2快速傅立叶变换子程序,n为变换点数,应满足2的整数次幂,k为幂次(正整数);数组x:输入信号数组,数据存放于地址为3000H~307FH存储器中,转为浮点型后,生成x数组,长度128;数组mo:FFT变换输出数组,长度128,浮点型,整型后,写入存储器中。2.子程序流程图:初始化输入数组排序计算第一层中间值计算层数计算对应层步长计算计算各层中间结果计算层数=0?计算结果输出NY3.启动CCS2.0,用Project/Open打开“ExpFFT01.pjt”工程文件双击“ExpFFT01.pjt”及“Source”可查看各源程序;加载“ExpFFT01.out”;4.在主程序中,k++处设置断点5.单击“Run”运行程序或按F5运行程序;程序将运行至断点处停止;6.用View/Graph/Time/Frequency打开一个图形观察窗口;7.单击“Animate”运行程序。或按F10运行,调整观察窗口并观察变换结果。五.实验总结这次DSP技术的实验是在我们学习了数字信号处理、C语言程序设计的先修课程和DSP技术,以及熟悉了CCS软件之后完成的。实验一我们首先熟悉要用的各种软硬件环境,接下来的实验二和三我们完成了有限冲击响应滤波器(FIR)算法实验和快速傅里叶变换(FFT)算法实验。这次实验我个人认为在以下几个方面收获最大:1.首先是实验前对自己过去几个学期已学理论知识的巩固加深、综合应用以及对实验相关资料的收集能力的提高。2.实验中各个部分的要求要理解掌握,认真对待。实验锻炼了我们认真的态度和严谨的精神。3.当遇到问题和困难的时候,一定要保持冷静,慢慢检查,自己多思考、多尝试,才能获得最终的成功。4.实验中遇到问题无法解决的时候要主动向同学请教,同时也要乐于帮助同学。我认识到,在实验的过程中要互相信任、互相帮助。通过实验,我们加深了相互间的友情。总之,这次实验让我得到了很多平时理论学习中不能获得的收获,加深了我们对DSP特别是FIR滤波器和FFT算法的原理的理解,并且逐步开始应用于实际。而在个别程序和分析方面存在的不足还需要在今后的学习中慢慢进步。
本文标题:DSP大作业-快速傅立叶变换(FFT)算法实验
链接地址:https://www.777doc.com/doc-4333431 .html