您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2019年山东省威海市中考数学试卷(答案解析版)
第1页,共21页2019年山东省威海市中考数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.-3的相反数是()A.−3B.3C.13D.−132.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为()A.8.89×1013B.8.89×1012C.88.9×1012D.8.89×10113.如图,一个人从山脚下的A点出发,沿山坡小路AB走到山顶B点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB的长度,下列按键顺序正确的是()A.B.C.D.4.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.5.下列运算正确的是()A.(𝑎2)3=𝑎5B.3𝑎2+𝑎=3𝑎3C.𝑎5÷𝑎2=𝑎3(𝑎≠0)D.𝑎(𝑎+1)=𝑎2+16.为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是()A.条形统计图B.频数直方图C.折线统计图D.扇形统计图7.如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A.∠𝐴𝐵𝐷=∠𝐷𝐶𝐸B.𝐷𝐹=𝐶𝐹C.∠𝐴𝐸𝐵=∠𝐵𝐶𝐷D.∠𝐴𝐸𝐶=∠𝐶𝐵𝐷8.计算(√12-3)0+√27-(-√33)-1的结果是()A.1+83√3B.1+2√3C.√3D.1+4√3第2页,共21页9.解不答式组{3−𝑥≥4①23𝑥+1>𝑥−23②时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.10.已知a,b是方程x2+x-3=0的两个实数根,则a2-b+2019的值是()A.2023B.2021C.2020D.201911.甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.施工时间/天123456789累计完成施工量/米3570105140160215270325380下列说法错误的是()A.甲队每天修路20米B.乙队第一天修路15米C.乙队技术改进后每天修路35米D.前七天甲,乙两队修路长度相等12.如图,⊙P与x轴交于点A(-5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为()A.√13+√3B.2√2+√3C.4√2D.2√2+2二、填空题(本大题共6小题,共18.0分)13.把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若∠1=23°,则∠2=______°.14.分解因式:2x2-2x+12=______.15.如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE,∠BEC=∠DEC,若AB=6,则CD=______.16.一元二次方程3x2=4-2x的解是______.17.如图,在四边形ABCD中,AB∥CD,连接AC,BD.若∠ACB=90°,AC=BC,AB=BD,则∠ADC=______°.第3页,共21页18.如图,在平面直角坐标系中,点A,B在反比例函数y=𝑘𝑥(k≠0)的图象上运动,且始终保持线段AB=4√2的长度不变.M为线段AB的中点,连接OM.则线段OM长度的最小值是______(用含k的代数式表示).三、解答题(本大题共7小题,共66.0分)19.列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.20.在一个箱内装入只有标号不同的三颗小球,标号分别为1,2,3.每次随机取出一颗小球,记下标号作为得分,再将小球放回箱内.小明现已取球三次,得分分别为1分,3分,2分,小明又从箱内取球两次,若五次得分的平均数不小于2.2分,请用画树状图或列表的方法,求发生“五次取球得分的平均数不小于2.2分”情况的概率.21.(1)阅读理解如图,点A,B在反比例函数y=1𝑥的图象上,连接AB,取线段AB的中点C.分别过点A,C,B作x轴的垂线,垂足为E,F,G,CF交反比例函数y=1𝑥的图象于点D.点E,F,G的横坐标分别为n-1,n,n+1(n>1).小红通过观察反比例函数y=1𝑥的图象,并运用几何知识得出结论:AE+BG=2CF,CF>DF由此得出一个关于1𝑛−1,1𝑛+1,2𝑛,之间数量关系的命题:若n>1,则______.(2)证明命题小东认为:可以通过“若a-b≥0,则a≥b”的思路证明上述命题.第4页,共21页小晴认为:可以通过“若a>0,b>0,且a÷b≥1,则a≥b”的思路证明上述命题.请你选择一种方法证明(1)中的命题.22.如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=35,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E会不会触碰到汽车货厢顶部.23.在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下x……-10123……y甲……63236……乙写错了常数项,列表如下:x……-10123……y乙……-2-12714……第5页,共21页通过上述信息,解决以下问题:(1)求原二次函数y=ax2+bx+c(a≠0)的表达式;(2)对于二次函数y=ax2+bx+c(a≠0),当x______时,y的值随x的值增大而增大;(3)若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围.24.如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE=EF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(3)求△BEF面积的最大值.25.(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论.【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是______.(3)拓展猜想第6页,共21页如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是______.第7页,共21页答案和解析1.【答案】B【解析】解:-3的相反数是3.故选:B.依据相反数的定义解答即可.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【答案】A【解析】解:法一:88.9万亿=88.9×104×108=88.9×1012用科学记数法表示:88.9×1012=8.89×1013法二:科学记数法表示为:88.9万亿=8890000000000=8.89×1013故选:A.利用科学记数法的表示形式进行解答即可本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n为正整数.)3.【答案】A【解析】解:在△ABC中,sinA=sin20°=,∴AB==,∴按键顺序为:2÷sin20=故选:A.在△ABC中,通过解直角三角形可得出sinA=,则AB=,即可得出结论.本题主要考查解直角三角形的应用-坡度坡角问题以及计算器,熟练应用计算器是解题关键.4.【答案】C【解析】第8页,共21页解:从上面看,得到的视图是:,故选:C.根据俯视图是从上面看到的图形进而得出答案.本题考查了三视图的知识,关键是找准俯视图所看的方向.5.【答案】C【解析】解:A、(a2)3=a6,故本选项错误;B、3a2+a,不是同类项,不能合并,故本选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故本选项错误.故选:C.根据合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质对各选项分析判断后利用排除法求解.本题考查了合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质.熟练掌握法则是解题的关键.6.【答案】D【解析】解:欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选:D.根据题意,需要反映部分与总体的关系,故最适合的统计图是扇形统计图.本题主要考查了统计图的应用,熟练掌握各种统计图的特点是解答本题的关键.7.【答案】C【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,第9页,共21页∴DE∥BC,∠ABD=∠CDB,∵∠ABD=∠DCE,∴∠DCE=∠CDB,∴BD∥CE,∴BCED为平行四边形,故A正确;∵DE∥BC,∴∠DEF=∠CBF,在△DEF与△CBF中,,∴△DEF≌△CBF(AAS),∴EF=BF,∵DF=CF,∴四边形BCED为平行四边形,故B正确;∵AE∥BC,∴∠AEB=∠CBF,∵∠AEB=∠BCD,∴∠CBF=∠BCD,∴CF=BF,同理,EF=DF,∴不能判定四边形BCED为平行四边形;故C错误;∵AE∥BC,∴∠DEC+∠BCE=∠EDB+∠DBC=180°,∵∠AEC=∠CBD,∴∠BDE=∠BCE,∴四边形BCED为平行四边形,故D正确,故选:C.根据平行四边形的性质得到AD∥BC,AB∥CD,求得DE∥BC,∠ABD=∠CDB,推出BD∥CE,于是得到四边形BCED为平行四边形,故A正确;根据平行线的性质得到∠DEF=∠CBF,根据全等三角形的性质得到EF=BF,于是得到四边形BCED为平行四边形,故B正确;根据平行线的性质得到∠AEB=∠CBF,求得∠CBF=∠BCD,求得CF=BF,同理,EF=DF,不能判定四边形BCED为平行四边形;故C错误;根据平行线的性质得到∠DEC+∠BCE=∠EDB+∠DBC=180°,推出∠BDE=∠BCE,于是得到四边形BCED为平行四边形,故D正确.第10页,共21页本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.8.【答案】D【解析】解:原式=1+=1+.故选:D.分别根据零次幂、二次根式的性质以及负指数幂化简即可求解.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式、绝对值等考点的运算.9.【答案】D【解析】解:解不等式①得:x≤-1,解不等式②得:x<5,将两不等式解集表示在数轴上如下:故选:D.先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.10.【答案】A【解析】解:a,b是方程x2+x-3=0的两个实数根,∴b=3-b2,a+b=-1,ab-3,∴a2-b+2019=a2-3+b2+2019=(a+b)2-2ab+2016=1+6+2016=2023;故选:A.根据题
本文标题:2019年山东省威海市中考数学试卷(答案解析版)
链接地址:https://www.777doc.com/doc-4415221 .html