您好,欢迎访问三七文档
菜谱之家课件、教案、试卷,全免费下载解直角三角形一、选择题1.(2014•湖南衡阳,第10题3分)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米考点:解直角三角形的应用-坡度坡角问题..分析:先根据坡比求得AE的长,已知CB=10m,即可求得AD.解答:解:∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选D.点评:此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.2.(2014•丽水,第5题3分)如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是()A.9mB.6mC.mD.m考点:解直角三角形的应用-坡度坡角问题..分析:在Rt△ABC中,已知了坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.解答:解:在Rt△ABC中,BC=5米,tanA=1:;∴AC=BC÷tanA=3米,∴AB==6米.故选B.点评:此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.菜谱之家课件、教案、试卷,全免费下载3.(2014•四川绵阳,第8题3分)如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.40海里B.40海里C.80海里D.40海里考点:解直角三角形的应用-方向角问题.分析:根据题意画出图形,进而得出PA,PC的长,即可得出答案.解答:解:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.点评:此题主要考查了方向角问题以及锐角三角函数关系等知识,得出各角度数是解题关键.4.二、填空题1.(2014•黑龙江龙东,第8题3分)△ABC中,AB=4,BC=3,∠BAC=30°,则△ABC的面积为2+或2﹣(答对1个给2分,多答或含有错误答案不得分).考点:解直角三角形..专题:分类讨论.分析:分两种情况:过点B或C作AC或AB上的高,由勾股定理可得出三角形的底和高,再求面积即可.解答:解:当∠B为钝角时,如图1,菜谱之家课件、教案、试卷,全免费下载过点B作BD⊥AC,∵∠BAC=30°,∴BD=AB,∵AB=4,∴BD=2,∴AD=2,∵BC=3,∴CD=,∴S△ABC=AC•BD=×(2+)×2=2+;当∠C为钝角时,如图2,过点B作BD⊥AC,交AC延长线于点D,∵∠BAC=30°,∴BD=AB,∵AB=4,∴BD=2,∵BC=3,∴CD=,∴AD=2,∴AC=2﹣,∴S△ABC=AC•BD=×(2﹣)×2=2﹣.点评:本题考查了解直角三角形,还涉及到的知识点有勾股定理、直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.2.(2014•浙江绍兴,第14题5分)用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是sin35°=或b≥a.考点:作图—复杂作图;切线的性质;解直角三角形分析:首先画BC=a,再以B为顶点,作∠ABC=35°,然后再以点C为圆心b为半径交AB于点A,然后连接AC即可,①当AC⊥BC时,②当b≥a时三角形只能作一个.解答:解:如图所示:菜谱之家课件、教案、试卷,全免费下载若这样的三角形只能作一个,则a,b间满足的关系式是:①当AC⊥BC时,即sin35°=②当b≥a时.故答案为:sin35°=或b≥a.点评:此题主要考查了复杂作图,关键是掌握作一角等于已知角的方法.3.(2014•江西,第13题3分)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形。若60BAD,AB=2,则图中阴影部分的面积为______.【答案】12-43.【考点】菱形的性质,勾股定理,旋转的性质.【分析】连接AC、BD,AO、BO,AC与BD交于点E,求出菱形对角线AC长,根据旋转的性质可知AO⊥CO。在Rt△AOC中,根据勾股定理求出AO=CO=22(23)622AC,从而求出Rt△AOC的面积,再减去△ACD的面积得阴影部分AOCD面积,一共有四个这样的面积,乘以4即得解。【解答】解:连接BD、AC,相交于点E,连接AO、CO。∵因为四边形ABCD是菱形,∴AC⊥BD,AB=AD=2。∵∠BAD=60°,∴△ABD是等边三角形,BD=AB=2,∴∠BAE=12∠BAD=30°,AE=12AC,BE=DE=12BD=1,菜谱之家课件、教案、试卷,全免费下载在Rt△ABE中,AE=2222231ABBE,∴AC=23。∵菱形ABCD以点O为中心按顺时针方向旋转90°,180°,270°,∴∠AOC=14×360°=90°,即AO⊥CO,AO=CO在Rt△AOC中,AO=CO=22(23)622AC。∵S△AOC=12AO·CO=12×6×6=3,S△ADC=12AC·DE=12×23×1=3,∴S阴影=S△AOC-S△ADC=4×(3-3)=12-43所以图中阴影部分的面积为12-43。4.三、解答题1.(2014•海南,第22题9分)如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行1464米到B点处测得正前方C点处的俯角为45°.求海底C点处距离海面DF的深度(结果精确到个位,参考数据:≈1.414,≈1.732,≈2.236)考点:解直角三角形的应用-仰角俯角问题..分析:首先作CE⊥AB于E,依题意,AB=1000,∠EAC=30°,∠CBE=45°,设CD=x,则BE=x,进而利用正切函数的定义求出x即可.解答:解:作CE⊥AB于E,依题意,AB=1464,∠EAC=30°,∠CBE=45°,设CE=x,则BE=x,Rt△ACE中,tan30°===,整理得出:3x=1464+x,解得:x=732()≈2000米,∴C点深度=x+600=2600米.答:海底C点处距离海面DF的深度约为2600米.菜谱之家课件、教案、试卷,全免费下载点评:此题主要考查了俯角的定义及其解直角三角形的应用,解题时首先正确理解俯角的定义,然后利用三角函数和已知条件构造方程解决问题.2.(2014•莱芜,第20题9分)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)考点:解直角三角形的应用-坡度坡角问题..分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DC﹣BE即可求解.解答:解:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DC﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.点评:考查了解直角三角形的应用﹣坡度坡角问题,两个直角三角形有公共的直角边,先求出公共边的解决此类题目的基本出发点.菜谱之家课件、教案、试卷,全免费下载3.(2014•青岛,第20题8分)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题..分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).菜谱之家课件、教案、试卷,全免费下载答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.4.(2014•山西,第21题7分)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度:是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-坡度坡角问题..专题:应用题.分析:过点A作AE⊥CC'于点E,交BB'于点F,过点B作BD⊥CC'于点D,分别求出AE、CE,利用勾股定理求解AC即可.解答:解:过点A作AE⊥CC'于点E,交BB'于点F,过点B作BD⊥CC'于点D,则△AFB、△BDC、△AEC都是直角三角形,四边形AA'B'F,BB'C'D和BFED都是矩形,∴BF=BB'﹣B'F=BB'﹣AA'=310﹣110=200,CD=CC'﹣C'D=CC'﹣BB'=710﹣310=400,∵i1=1:2,i2=1:1,∴AF=2BF=400,BD=CD=400,又∵EF=BD=400,DE=BF=200,∴AE=AF+EF=800,CE=CD+DE=600,∴在Rt△AEC中,AC===1000(米).答:钢缆AC的长度是1000米.菜谱之家课件、教案、试卷,全免费下载点评:本题考查了解直角三角形的应用,解答本题的关键是理解坡度坡角的定义,及勾股定理的表达式,难度一般.5.(2014•乐山,第21题10分)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.考点:直角梯形;矩形的判定与性质;解直角三角形..分析:利用锐角三角函数关系得出BH的长,进而得出BC的长,即可得出CE的长.解答:解:过点A作AH⊥BC于H,则A
本文标题:解直角三角形
链接地址:https://www.777doc.com/doc-4428419 .html