您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 如何学好高中数学知乎
如何学好高中数学知乎【篇一:如何学好高中数学知乎】作为一名一线重点高中的数学老师,带重点班,觉得,学数学天赋固然非常重要,但是勤能补拙(120可得,除非江苏卷遇到葛大师出题),也有些方式可以弥补这些缺憾!2.利用图形记忆,布赞的思维导图(高中数学做思维导图其实有点乱)告诉我们,图形很容易帮助记忆(提升100倍以上的记忆能力),所以我上课从来都说看图说话,用图形帮助记忆公式,帮助解题。3.课后做好订正,错题本,哲学上说,人不可能两次踏进同一条河流,但是做错的题目,往往学习偏差的学生还是会做错,防止做错的再做错,可以极大的提升成绩。4.理解题目,为何要怎么做题,波利亚《如何解题》,学生是没空研究,但适当的问题串引领,比如问自己,为什么这一步要这么么做,为什么要化简,为什么要…这种思维习惯都可以提升你的解题能力,我上课也都是这样的问题串讲解。5.适当的练习,题海战术我不推荐,但又最行之有效,但是是要在1.2.3.4.都做好的基础上,去练习,否则就是不求甚解。,全部免费,每天推送题目,还是视频讲解,你一定会进步的!————————华丽的分割线!1-1如何听课——紧跟思路,大脑运转。1-2如何听课——善于总结,化繁为简。不知道老师上课做不做总结,他不做,就你做。我和学生说我不一定很聪明(谦虚一下),但是总结的能力是一流的,从个性中发现共性,能让你从学会一道题,变成学会一类题。好的老师,一般会对一类题型进行归纳总结,强调要点,所以这是你听课更要认真听的,而不是,这题会做了,我就做其他事情去了。我和学生说,归纳总结才是一节课的精华!这样才能把45分钟的知识/题目转化为非常小的记忆单位,这才是高效的学习。1-3如何做笔记——适当留白,有的放矢。很多人抱怨,来不及做笔记,或者说记了不会看!很正常,记得满满当当,都是一种颜色的,颜值那么低,谁会愿意看?笔记从来不是简单的复制粘贴老师的黑板内容,而是去其糟粕,取其精华的加工成果!①一些无所谓的计算可以省略(省下时间),下课回去后慢慢补齐,练习计算很重要。②一些老师说的解释说明,没有抄在黑板上的,但你觉得有用,重要的,记下。不同颜色的笔或者荧光笔。③重要的口诀,归纳总结,步骤,记下。不同颜色的笔或者荧光笔。④易错点,关键字,不同颜色的笔或者荧光笔。这样的笔记,由点及面,要简单复习——荧光笔,详细复习,全看。⑤留白,水墨画的一种作画方式,适当的留出笔记中的一些地方,以后看到学习的时候精加工,和我以后说的错题本进行超链接!————————下划线,第二次更新;下次更新666赞吧,要忙着做流氓方法解高考题的视频,估计没时间;2-1用图形的方式帮助记忆。布赞说的思维导图可行么?仁者见仁,智者见智,有准备做一张高中数学知识的思维导图,有思维导图高手可以与我联系。但是思维导图的记忆,是一个节点不断向外延伸,延伸到另外一个节点,数学的知识有千变万化的联系,发散出去太乱了,一般也收不回来。愚见认为,现阶段(我想了一年),可能不太适合导图,如果非要做成导图,可以按照第一轮复习用书作为参考,试试看,做好的,我很愿意与之沟通交流。——以上废话。2-3利用图形帮助解决问题,一些同学十分讨厌动手作图(每天看他们都懒得画图,这样2-2中知识点的记忆完全就不深刻,还有可能记错),做题的时候,也很难有直观的感觉。数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休——华罗庚,数形结合是高中解题的两条大腿之一(下一期介绍另外一条大腿),很多题目配合上图形就豁然开朗。比如线性规划里面的各种问题的变式。距离,斜率,截距等等,这都是用形来解决数的问题。以后有机会做一期思想方法的数形结合的视频给大家看。不过我怀疑我的方法是否适合理科生诶------------------------------------1.我对自己的要求:选择题不择手段,大题不假思索即:选择题要灵活,方法要巧,能排除就排除,能用特殊值就用特殊值。大题要熟练,看到题目马上有思路。这个一是要求基础知识、基本方法的熟练,二是要求做大量的题并且善于总结反思。总结反思是非常重要的。对于选择题来说,不择手段做出来的题,要在考后用通法彻底弄懂。解答题我还是喜欢把相同、相似类型的题放在一起,通过对比可以发现好多秘密。基础一定要扎实。这个只要你听老师的话就一定没问题。填学案别眼高手低,基础知识梳理一定要耐心认真的写;上课别因为简单就不听,里面包含了很多易错点,别高估自己以为自己不会错;同时老师讲解的基本方法也是做解答题的基石,所以数学课也要做笔记,而且我的数学笔记是我最好的笔记之一;公式定理一定要背过,到了二轮、三轮复习的时候,有很多同学发现自己的数学瓶颈竟然在公式上,很可笑也很可惜,所以跑操之前的、熄灯之前的三五分钟,背背公式吧。限时练习。因为我数学考试常常前松后紧答不完题,所以我给自己定的规矩是:平日练习当考试,限时、规范;考试当练习赶作业,稳准狠。研究答案,规范作答,得全步骤分。会的题要通过规范作答必须得满分,不会的题也要通过写出基本步骤尽量多得几分。2.考试时,统筹安排,顾全大局,勇于舍弃。要做好时间安排。对我来说:选择填空30~45min,大题基本上10min一个题,如果某个大题三分钟没思路我就会跳过——但不是放弃。做完我拿手的导数题我会再回头啃它,而且几乎每次一回头我就有思路了。如果一次回头不行就多回几次。做题时要精神高度集中,保证思路始终如一的清晰连贯。对我来说,稍有一点恍惚,就会把7+3算成8,这也让我要求自己,稍一觉得恍惚就要回头检查。高三下学期,一轮复习结束之后,我的纠错本已经覆盖了数学全部章节的大多数题型,也就是说对一般的题来说,“会”已经不成问题,但是在套题拉练中总有失误失分。这时候再一一纠错有点不值得,我就有选择的纠错,如果是新题型就整理在纠错本上。然后卷子都留着,粘成一摞,失误的错处狠狠地标出来,每次套题拉练之前都看(因为每次拉练都必须当高考),考完反思时也会看,要结合以前的错误进行进一步反思。到一模考试的时候,整张卷子那个地方容易出错我都了然于胸。一模考数学那天,从迷迷糊糊的午休到下午发数学卷子,我把易错点在脑子里过了不下五遍,考试时到了那个地方就特别注意。需要提醒的是,不要只盯着曾经错过的地方,因为错误是防不胜防的,这个参见第6条。6月7号考完数学,我觉得考砸了,哭了一场,但从高考成绩看,我的数学居然是发挥的比较好的,所以在这里我想总结一下这场考试。首先我高中三年一直非常重视数学,作为一名文科生,我一直非常热爱数学。高三的时候,我对数学的期望值最高,花在数学上的时间也最多,基础牢,练习也落实的很扎实。其次,高考时,平时总结的答题策略,在考数学时是应用的最好的。选择题30分钟,最后一题我不会,我果断放弃,猜了一个。不是瞎猜,我数了数前11个选择题,有3个a,3个b,3个c,2个d,最后一题我当然猜d,考后对答案,果然是。做完选择填空,刚好45分钟,其实我对自己并不太满意,因为这是我最慢的速度了,这意味着后边的大题必须10分钟一道绝不能拖拉。开始做大题后我发现并不是那么简单,立体几何我就卡住了。好在平时拉练我立体几何必卡,一定要第二次看才攻克,所以这次我也没有慌,还以为只要先跳过等会就能把它拿下。然后是数列题,第一问并不难,但是有点绕,在考场那个紧张的环境下,我好长时间都没理清楚,到了该放弃的时间了,我的感觉告诉我,再坚持一下就好了,然后我就坚持做到最后,花了至少20分钟才搞定。这个时候我就有点慌,又回头去看那个立体几何,又纠缠了5分钟,还是没思路,嗯,更担心了。这时候脑子里什么都想了,首先想北大去不了了,然后想考砸了是不是要复读啊,还想其他人应该做的很顺利吧……但是没办法,必须逼自己别乱想,继续做。导数题好像比较变态,跟平时做的不太一样,所以虽然这是我的强项,但我还是做的不顺利,到最后得数算不出来,我就扔下了。因为我想剩下的时间解析几何至少要做一问,立体几何也必须拿下。又回头看立体几何,还是没有确定的思路,就是说有想法,但不敢贸然下笔,因为那个定理平时很少用。只好继续做解析几何。第一问很顺利,这时候还有15分钟。于是想立体几何绝对不能空着,那样我数学就完了,然后我就很勇敢的回头把那个不成熟的想法写上了,感觉整个立体几何都像是编上的。还有时间,我把解析几何第二问做了一半。收卷的时候我想,太遗憾了,如果有时间,也许第二问我就能做出来了。整个考试过程比较失败的地方就是胡思乱想。一模考试的时候我心态特好,我告诉自己“你一定要相信你的数学就是最好的,不要管别人翻卷子比你翻得快,他们翻卷子是因为不会做”,整个考试过程我都很沉着,很稳。高考的时候,忘记这一茬了,有点自乱阵脚。给我增分的地方有:1.选择题最后一题勇于舍弃,并且有技巧的猜答案;2.蒙上的那个立体几何,应该是大部分对了,我觉得这得益于我平时对立体几何的“感觉”;3.导数题虽然没有做出结果,但思路是正确的,扣分不多;4.解析几何写上的步骤都是正确的,都得分了。所以基本上我不会的都没写,也就是没浪费时间,写上的都得分了,没做无用功。【篇三:如何学好高中数学知乎】高中数学学得好的(稳定在130+)只有两类学生:第一类,智商比较高(并不需要非常高),属于平时学校的练习鲜有题目能拦得住他的,考场上压轴题也能靠智商正面刚出来(尽管有时候并不能刚出来)。第二类,总结做得比较到位,或者学校老师(主要是大家普遍意见大的某几所超级中学)注重帮助学生总结解题套路,在考场上哪怕是压轴题,能解决大部分全国卷当中的压轴题(浙江的数学另说)。同时,高中数学学不好(上不了130)的大概有以下几种情况:第一,基础薄弱/知识缺漏,实际上这类学生往往伴随有做题速度慢、考试时间不够、选择题最后几题/大题有些题目做不出来。第二,无谓失分多,这类学生或许数学底子不错,或者自恃数学底子不错,但是总是丢小分,成绩波动大。如果题目难度上升,做题速度一上去,问题更明显。第三,压轴题攻不上去,要么是智商不够高,要么是基本没什么针对压轴题的总结。总之,在考场有限的时间内做不出压轴题,如果压轴题花时间过多,前面的丢分也就上去。关于无谓失分的问题,请出门右转,参照。关于基础薄弱的问题,说真的,哪块有问题补哪块,没有特别多的捷径(高考当中有什么算是shortcut的吗?)这篇文章,我只想谈一个问题:数学怎么提高到130分以上?以下是正文:一个很有趣的现象是,很多数学自恃学得不错的学生,往往很容易陷入一个怪圈——难题都会,分数却不是很高。这些学生往往解决了那些“难题”,却常在一些他们认为的“简单题”上面丢了大量的分数,最终成绩也不是特别好看。很多人一提起提高数学,就想到刷题、解决难题,却没有思考以下这些问题。到底什么是难题?难题、易丢分题目,背后到底考查着什么?这些考察点对应你什么样的能力?本文旨在从分析什么是难题,重构你对难题的理解,探寻高考数学考查的基本能力,为那些仍然挣扎在高考数学中的学弟学妹们,指点迷津。-------------------------------------到底什么是“难题”?很多学生喜欢一厢情愿地认为难题就是压轴题、就是一般同学做不出来的题目,可是恰恰越是有这种想法的学生,最容易掉进“难题都会,却仍然考不了高分”的窘境。问题出在这部分学生,对难题的定义过于狭隘,在一些他们认为不是难题的题目上,屡屡栽了跟头。那种题目可以称得上是高考数学当中的难题呢?大致有以下三种:◆第一种,思维难度大。即看了题目以后不知道该如何去思考,没有方向,或者思想到了某一部卡住了再也进行不下去,故而解不出来;◆第二种,计算难度大。即学生看见以后能够有一定的解题思路,但题目想要进行较全面的求解,就基于一定的计算,当计算量较大时,学生往往因计算错误而让题目变得过于复杂故而难以进行下去;◆第三种,阅读难度大。即题干较长,条件和干扰条件较多,阅读起来较为费劲的题目。考生在面对这类题目时,往往因为高度紧张考试环境时,容易造成阅读的困难,而抓不住题目的重点或者漏掉一些条件,导致考生难以拿分。大部分定义难题较狭隘的同学,都是把视线全部投在了思维难度大的题目上,有
本文标题:如何学好高中数学知乎
链接地址:https://www.777doc.com/doc-4430053 .html