您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 质量分析常用工具教材
质量分析常用工具培训教材1.前言2.排列图3.因果图4.散布图5.直方图6.控制图目录前言统计质量控制是质量控制的基本方法,执行全面质量管理的基本手段,也是SPC的基础,这里简要介绍制造企业应用最广的统计质量控制方法。常用统计分析方法与控制图获得有效的质量数据之后,就可以利用各种统计分析方法和控制图对质量数据进行加工处理,从中提取出有价值的信息成分。常用统计分析方法此处介绍的方法是生产现场经常使用,易于掌握的统计方法,包括排列图、因果图、检查表、控制图等。排列图1.排列图排列图是找出影响产品质量主要因素的图表工具.它是由意大利经济学家巴洛特(Pareto)提出的.巴洛特发现人类经济领域中少数人占有社会上的大部分财富,而绝大多数人处于贫困状况的现象是一种相当普遍的社会现象,即所谓关键的少数与次要的多数原理.朱兰(美国质量管理学家)把这个原理应用到质量管理中来,成为在质量管理中发现主要质量问题和确定质量改进方向的有力工具.排列图1.1排列图的画法项目数量累积数量比例累积比例总计排列图1.2排列图制作可分为5步:1.2.1确定分析的对象排列图一般用来分析产品或零件的废品件数、吨数、损失金额、消耗工时及不合格项数等.1.2.2确定问题分类的项目可按废品项目、缺陷项目、零件项目、不同操作者等进行分类。1.2.3收集与整理数据列表汇总每个项目发生的数量,即频数fi、项目按发生的数量大小,由大到小排列。最后一项是无法进一步细分或明确划分的项目统一称为“其它”。1.2.4计算频数fi、频率Pi和累计频率Fi首先统计频数fi,然后按(1)、(2)式分别计算频率Pi和累计频率Fi(1)(2)式中,f为各项目发生频数之和。1.2.5画排列图排列图由两个纵坐标,一个横坐标,几个顺序排列的矩形和一条累计频率折线组成。如图1所示为一排列图实例。排列图1.3排列图用途1.3.1确定主要因素、有影响因素和次要因素根据排列图可以确定质量问题的主要因素:累计频率Fi在0-80%左右的若干因素。是影响产品质量的主要因素,如图中焊缝气孔和夹渣。主要因素个数一般为1-2个,最多不超过3个。根据排列图可以确定质量问题的有影响因素:累计频率Fi在80-95%左右的若干因素。它们对产品质量有一定影响,称为有影响因素。根据排列图可以确定质量问题的次要因素:累计频率Fi在95-100%左右的若干因素,其对产品质量仅有轻徽影响,称为次要因素。1.3.2抓主要因素解决质量问题将质量影响因素分类之后,重点针对1-2项主要因素进行改进提高,以解决质量问题。实践证明,集中精力将主要因素的影响减少比消灭次要因素更加有效。1.3.3检查质量改进措施的效果采取改进措施后,为了检验其效果,可用排列图来检查。若改进后的排列图中横坐标上因素频数矩形高度有明显降低,则说明确有效果。因果图2.因果图在找出质量问题以后,为分析产生质量问题的原因,以确定因果关系的图表称为因果图。它由质量问题和影响因素两部分组成。图中主干箭头所指的为质量问题,主干上的大枝表示主要原因。中枝、小枝、细枝表示原因的依次展开。2.1.因果图的画法因果图2.1.1确定待分析的质量问题,将其写在图右侧的方框内,画出主干,箭头指向右端,见图。.2.1.2确定该问题中影响质量原因的分类方法。一般对于工序质量问题,常按其影响因素:人(Man)、设备(Machine)、原材料(Material)、方法(Method)、环境(Environment)等进行分类,简称为4M1E。对应每一类原因画出大枝、箭头方向从左到右斜指向主干,并在箭头尾端写上原因分类项目,见图。2.1.3将各分类项目分别展开,每个大枝上分出若干中枝表示各项目中造成质量问题的一个原因。中枝平行于主干箭头指向大枝。见图。2.1.4将中枝进一步展开成小枝。小枝是造成中枝的原因,依次展开,直至细到能采取措施为止。2.1.5找出主要原因,画上方框作为质量改进的重点。2.2因果图的用途2.2.1根据质量问题逆向追溯产生原因,由粗到细找出产生质量问题的各个层次、各种各样的原因。以及各原因的传递关系。2.2.2因果图可明确原因的影响大小和主次。从而可以作为制定质量改进措施的指导依据。散布图3.散布图在质量问题的原因分析中,常会接触到各个质量因素之间的关系。这些变量之间的关系往往不能进行解析描述,不能由一个(成几个)变量的数值精确地求出另一个变量的值,我们称之为非确定性关系。散布图就是将两个非确定性关系变量的数据对应列出,标记在坐标图上,来观察它们之间的关系的图表。3.1散布图的画法3.1.1收集数据所要研究的两个变量如果一个为原因,另一个为结果时,则一般取原因变量为自变量,取结果变量为因变量。通过抽样检测得到两个变量的一组数据序列。散布图3.1.2在坐标上画点在直角坐标系中,把上述对应的数据组序列以点的形式一一描出。注意,横轴与纵轴的长度单位选取原则是使两个变量的散布范围大致相等,以便分析两变量之间的相关关系。散布图3.2.散布图的用途3.2.1确定两变量(因素)之间的相关性两变量之间的散布图大致可分下列六种情形,如图所示。1)强正相关。x增大,y也随之线性增大。x与y之间可用直线y=a+bx(b为正数)表示。此时,只要控制住x,y也随之被控制住了,图(a)就属这种情况。2)弱正相关。图(b)所示,点分布在一条直线附近,且x增大,y基本上随之线性增大,此时除了因素x外可能还有其它因素影响y。3)无关。图(c)所示,x和y两变量之间没有任何一种明确的趋势关系。说明两因素互不相关。4)弱负相关。图(d)所示,x增大,y基本上随之线性减小。此时除x之外,可能还有其它因素影响y。5)强负相关。图(e)所示,x与y之间可用直线y=a+bx(b为负数)表示。y随x的增大而减小。此时,可以通过控制x而控制y的变化。6)非线性相关。图(f)所示,x、y之间可用曲线方程进行拟合,根据两变量之间的曲线关系,可以利用x的控制调整实现对y的控制。散布图3.2.2变量控制。通过分析各变量之间的相互关系。确定出各变量之间的关联性类型及其强弱。当两变量之间的关联性很强时,可以通过对容易控制(操作简单、成本低)的变量的控制达到对难控制(操作复杂、成本高)的变量的间接控制。3.2.3可以把质量问题作为因变量,确定各种因素对产品质量的影响程度。当同时分析各种因素对某一质量指标的作用关系时,或某一质量现状的引发因素包含多种因素时,应尽可能将质量数据按照各种可能因素类型进行分层,如:按操作人员分层、按使用设备分层、按工作时间分层、按使用原材料分层、按工艺方法分层或按工作环境分层等等。图所示为将因素分层之后使原来无关的数据得以进一步细分。从而提示出更准确的内在联系。直方图4.直方图直方图是适用于对大量计量值数据进行整理加工、找出其统计规律。即分析数据分布的形态,以便对其总体分布特征进行推断的方法。主要图形为直角坐标系中若干顺序排列的矩形。各矩形底边相等,为数据区间。矩形的高为数据落入各相应区间的频数。4.1.直方图画法4.1.1收集数据。数据个数一般在100个左右,至少不少于50个。理论上讲数据越多越好,但因收集数据需要耗费时间和人力、费用,所以收集的数据有限。4.1.2找出最大值L,最小值S和极差R。找出全体数据的最大值L和最小值S,计算出极差R=L-S。4.1.3确定数据分组数k及组矩h。通常分组数k取4-20。设数据个数为n,可近似取。通常取等组距,h=R/k。4.1.4确定各组上、下界.只需确定第一组下界值即可根据组距h确定出各组的上、下界取值。注意一个原则:应使数据的全体落在第一组的下界值与最后一组(第k组)的上界值所组成的开区间之内。4.1.5累计频率画直方图。累计各组中数据频数fi,并以组距为底边,fi为高,画出一系列矩形,得到直方图。见图所示。直方图4.2.直方图用途4.2.1计算均值和标准差S均值表示样本数据的“质量中心”,可以按下式计算,式中,n为数据个数。样本数据的分散或变异程度可用下列样本标准差进行度量:直方图4.2.2从直方图可以直观地看出产品质量特性的分布形态,便于判断工序是否处于统计控制状态,以决定是否采取相应处理措施。至此为止,我们介绍了质量控制中常用的统计分析方法。这些方法都是现场中经常用到的,实现方便、简单有效的统计质量控制方法。各种方法可以单独使用,也可以综合使用,如何结合生产实际情况,选择一种合适的方法,达到预期的控制效果,仍需要广大工程技术人员在实践中不断摸索并总结经验。控制图5.控制图现在将介绍过程控制中常用的控制图方法。包括控制图的重要性,控制图原理,控制图种类及选用。控制图5.1控制图的重要性控制图是对生产过程或服务过程质量加以测定、记录从而进行控制管理的一种图形方法。图9-6所示为一控制图图例。图上有中心线CL、上控制界限UCL和下控制界限LCL,并有按时间顺序抽取的样本统计量数值的描点序列。统计过程控制(SPC)作为统计质量控制(SQC)的核心技术受到普遍的重视。目前,工业发达国家都将统计过程控制列为高技术项目,认为SPC是实现以预测为主的质量控制的有效手段。控制图所以能获得广泛应用,主要是由于它能起到下列作用:5.1.1贯彻预防为主的原则。应用控制图有助于保持过程处于控制状态,从而起到保证质量防患于未然的作用。5.1.2.改进生产率。应用控制图可以减少废品和返工,从而提高生产率、降低成本和增加生产能力。5.1.3.防止不必要的过程调整。控制图可用以区分质量的偶然波动与异常波动,从而使操作者减少不必要的过程调整。5.1.4.提供有关工序能力的信息。控制图可以提供重要的过程参数数据以及它们的时间稳定性,这些对于产品设计和过程设计都是十分重要的。控制图5.2控制图原理5.2.1.统计控制状态任何一个生产过程,不论它是如何精确设计和精心维护,总存在着一定量的固有的或自然的变化。它是由许多偶然因素形成的偶然波动的累积效果。由于这种波动比较小,所以我们认为这时生产过程处于受控状态或称为稳态。此外,在生产过程中有时也发生由异常因素造成的异常波动。如:由于设备调整不当、人为差错或原材料的缺陷而导致的质量波动。与偶然波动相比这种异常变化要大得多,而且往往表现一定的趋势和规律,此时,我们认为生产过程处于失控状态。受控状态是生产过程追求的目标,此时,对产品的质量是有把握的。控制图即是用来监测生产过程状态的一种有效工具。控制图5.2.2.控制图的统计学原理令W为度量某个质量特性的统计样本。假定W的均值为,而W的标准差为。于是,中心线、上控制限和下控制限分别为式中,K为中心线与控制界限之间的用标准差为单位所表示的间隔宽度。图说明了控制图的控制原理。对于每一个控制点来讲,只要点子是在控制界限之间,我们就认为过程处于控制状态,不需要任何措施;但如果点子落在控制界限之外,就认为过程失控,必须找出异常因素。采取措施加以消除。正常情况下点子分布是正态的,落在控制界限之内的概率远大于落在控制界限之外的概率。反之,若点子落在控制界限之外,可能是属于正常情况下的小概率事件发生,也可能是过程异常发生,相对来讲,后者发生的概率要大得多。因此,我们宁可以为后者情况发生,这正是控制图的统计学原理。UCL=X+A2RCL=D4RLCL=D3R控制图点子落在控制界限之内是否一定处于稳态?点子落在控制界线之外是否一定出现异常?这两个问题的因答都是否定的。更为科学的判断应根据概率统计方法对过程进行定量分析,精确计算出状态的概率值之后再进行过程状态判断。以K取3为例(上、下界限距中心线距离为3倍的标准差)可计算出各种模式控制图的概率值,如表1所示。控制图5.2.3.控制图根据质量数据的类型可分为:计量值控制图、计件值控制图和计点值控制图。这些控制图各有各的用途,应根据所控制质量指标的情况和数据性质分别加以选择。数据类型计量值均值-极差控制图X-R控制图均值-标准差控制图X-S控制图中位数-极差控制图X-R控制图单值-移动极差控制图X-RS控制图计件值不合格品率控制图P控制图不合格品数控制图Pn控制图计点值缺陷数控制图C控
本文标题:质量分析常用工具教材
链接地址:https://www.777doc.com/doc-443580 .html