您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高一数学(函数单调性的概念)
商丘市第三高级中学高一数学主讲教师刘振涛音乐鉴赏片段一一直上升的音阶,平淡,没有起伏,乏味,单调!片段二音符跳动,旋律悠扬,此起彼伏!问题提出德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究.他经过测试,得到了以下一些数据:时间间隔t刚记忆完毕20分钟后60分钟后8-9小时后1天后2天后6天后一个月后记忆量y(百分比)10058.244.235.833.727.825.421.1以上数据表明,记忆量y是时间间隔t的函数.艾宾浩斯根据这些数据描绘出了著名的“艾宾浩斯遗忘曲线”,如图.123tyo20406080100思考1:当时间间隔t逐渐增大你能看出对应的函数值y有什么变化趋势?通过这个试验,你打算以后如何对待刚学过的知识?思考2:“艾宾浩斯遗忘曲线”从左至右是逐渐下降的,对此,我们如何用数学观点进行解释?tyo20406080100123知识探究(一)yxo考察下列两个函数:()fxx2()(0)fxxx(1);(2)xyo思考1:这两个函数的图象分别是什么?二者有何共同特征?思考2:如果一个函数的图象从左至右逐渐上升,那么当自变量x从小到大依次取值时,函数值y的变化情况如何?()fx12xx1()fx2()fx思考3:如图为函数在定义域I内某个区间D上的图象,对于该区间上任意两个自变量x1和x2,当时,与的大小关系如何?xyox1x2()yfx1()fx2()fx思考4:我们把具有上述特点的函数称为增函数,那么怎样定义“函数在区间D上是增函数”?()fx()fx12,xx1x2x1()fx2()fx对于函数定义域I内某个区间D上的任意两个自变量的值,若当时,都有,则称函数在区间D上是增函数.知识探究(二)考察下列两个函数:()fxx2()(0)fxxx(1);(2)xyoxoy思考1:这两个函数的图象分别是什么?二者有何共同特征?()fx思考2:仿照右图及下面的增函数定义,那么我们该怎样为“函数在区间D上是减函数”下定义?2()fxxyox1x2()yfx1()fx()fx12,xx1x2x1()fx2()fx对于函数定义域I内某个区间D上的任意两个自变量的值,若当时,都有,则称函数在区间D上是减函数.()fx12,xx1x2x1()fx2()fx对于函数定义域I内某个区间D上的任意两个自变量的值,若当时,都有,则称函数在区间D上是增函数.定义:如果函数y=f(x)在区间D上是增函数(减函数),则称函数f(x)在这一区间具有(严格的)单调性,区间D叫做函数f(x)的单调区间.理论迁移-5-3136oxy()yfx()yfx例1如图是定义在闭区间[-5,6]上的函数的图象,根据图象说出的单调区间,以及在每一单调区间上,函数是增函数还是减函数.()yfx5,3,3,1,1,3,3,63,1,3,65,3,1,3单增区间:单减区间:()kPkV为正常数例2物理学中的玻意耳定律告诉我们,对于一定量的气体,当其体积V减小时,压强p将增大.试用函数的单调性证明.()fx12,xx1x2x1()fx2()fx对于函数定义域I内某个区间D上的任意两个自变量的值,若当时,都有,则称函数在区间D上是减函数.P(v)=k/v(k为正常数)D中任取v1,v2且(v1v2),证明p(v1)p(v2)0,证明总结:利用定义确定或证明函数f(x)在给定的区间D上的单调性的一般步骤:去比球(取比求)1.取:任取x1,x2∈D,且x1x2;2.比:比较f(x2)与f(x1)大小;3.求:求的值21()()fxfx2121()()0()()()()0()fxfxfxfx增函数0减函数比较方法作差()()65fxxR证明:在上为增函数.1212121221211265656,,120,()()()()()xxxxRfxfxfxfxfxRxxxxxxxx-且令知即证明:任取则由故而在上为增函数.课后作业:P32:1,3.谢谢大家再见
本文标题:高一数学(函数单调性的概念)
链接地址:https://www.777doc.com/doc-4445816 .html