您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 微积分(曹定华)(修订版)课后题答案第三章习题详解
1第三章习题3-11.设s=12gt2,求2ddtst.解:22221214()(2)2limlim22tttggdsstsdtttt21lim(2)22tgtg2.设f(x)=1x,求f(x0)(x0≠0).解:1211()()()fxxxx00201()(0)fxxx3.(1)求曲线2yx上点(2,4)处的切线方程和法线方程;(2)求过点(3,8)且与曲线2yx相切的直线方程;(3)求xye上点(2,2e)处的切线方程和法线方程;(4)求过点(2,0)且与xye相切的直线方程。解:略。4.下列各题中均假定f′(x0)存在,按照导数定义观察下列极限,指出A表示什么:(1)0limx00()()fxxfxx=A;(2)f(x0)=0,0limxx0()fxxx=A;(3)0limh00()()fxhfxhh=A.解:(1)0000000()()[()]()limlim()xxfxxfxfxxfxfxxx0()Afx(2)000000()()()limlim()xxxxfxfxfxfxxxxx20()Afx(3)000()()limhfxhfxhh00000[()()][()()]limhfxhfxfxhfxh000000()()[()]()limlimhhfxhfxfxhfxhh000()()2()fxfxfx02()Afx5.求下列函数的导数:(1)y=x;(2)y=321x;(3)y=3225xxx.解:(1)12yxx112211()22yxxx(2)23yx225133335222()333yxxxx(3)2152362yxxxx15666511()66yxxx6.讨论函数y=32x在x=0点处的连续性和可导性.解:30lim0(0)xxf332000()(0)01limlimlim0xxxfxfxxxx函数3yx在0x点处连续但不可导。7.试由倒数定义,证明:若f(x)为可导的奇(偶)函数,则f′(x)是偶(奇)函数。证:()fx为偶函数()()fxfx300()(0)()(0)(0)limlim00xxfxffxffxx0()(0)lim(0)0xfxffx,即2(0)0f故(0)0f8.求下列函数在x0处的左、右导数,从而证明函数在x0处不可导:(1)y=03sin,0,0,0,xxxxx;(2)y=02,1,1,1,xxxxx.解:(1)32000()(0)0(0)limlimlim00xxxfxfxfxxx00()(0)sin0(0)limlim10xxfxfxfxx(0)(0)ff函数在0x处不可导。(2)2111()(1)1(1)limlimlim(1)211xxxfxfxfxxx111()(1)111(1)limlimlim1121xxxfxfxfxxx(1)(1)ff函数在1x处不可导。9.设函数f(x)=2,1,,1.xxaxbx为了使函数f(x)在x=1点处连续且可导,a,b应取什么值?解:为使()fx在1x处连续,必须(10)(10)(1)fff,11(10)lim()lim()xxffxaxbab211(10)lim()lim1xxffxx,(1)1f11abba(1)为了使()fx在1x处可导,必须(1)(1)ff111()(1)1(1)limlimlim111xxxfxfaxbaxafaxxx42111()(1)1(1)limlimlim(1)211xxxfxfxfxxx2a,代入(1)式得1b当2a,1b时()fx在1x处连续且可导。10※.证明:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a2.证:设00(,)pxy是双曲线2xya上任一点,则200xya,该双曲线在00(,)pxy处切线的斜率0200022000xxxyyakyxxx该双曲线在00(,)pxy处切线的方程为:0000()yyyxxx令0x得该切线在y轴上的截距为02y,令0y得该切线在x轴上的截距为02x,于是,它与两坐标轴构成的三角形的面积2200001222222syxxyaa。11.垂直向上抛一物体,其上升高度与时间t的关系式为h(t)=10t-12gt2(m),求:(1)物体从t=1(s)到t=1.2(s)的平均速度;(2)速度函数v(t);(3)物体何时到达最高点.解:(1)2211(101.29.81.2)(1019.81)(1.2)(1)221.210.2hhv0.78(m/s)(2)()()10vthtgt(3)当()0vt时,物体到达最高点。由()0vt即100gt得1050()49tsg即上抛5049时物体到达最高点。12.设物体绕定轴旋转,在时间间隔[0,t]内,转过角度θ,从而转角θ是t的函数;θ=θ(t).如果旋转是匀速的,那么称ω=t为该物体旋转的角速度.如果旋转是非匀速5的,应怎样确定该物体在时刻t0的角速度?解:设从时刻0t到0tt间转过的角度为,则00()()ttt物体在时刻0t的角速度为00()limtttddtdtdt。13※.已知f(x)在x=x0点可导,证明:000()()limhfxhfxhh=(+β)f′(x0).证:当0,0时,000()()limhfxhfxhh00000[()()][()()]limhfxhfxfxhfxh000000[()()][()()]limlimhhfxhfxfxhfxhh000()()()()fxfxfx习题3-21.求下列函数的导数:(1)s=3lnt+sinπ7;(2)y=xlnx;(3)y=(1-x2)·sinx·(1-sinx);(4)y=1sin1cosxx;(5)y=tanx+eπ;(6)y=secxx-3secx;(7)y=lnx-2lgx+3log2x;(8)y=211xx.解:(1)3st(2)(ln)()ln(ln)yxxxxxxlnln122xxxxxxxln22xx(3)22(1)sin(1sin)(1)(sin)(1sin)yxxxxxx2(1)sin(1sin)xxx6222sin(1sin)(1)cos(1sin)(1)sin(cos)xxxxxxxxx2222sin2sincoscossin2sin2xxxxxxxxxx(4)2(1sin)(1cos)(1sin)(1cos)(1cos)xxxxyx22cos(1cos)(1sin)sin1sincos(1cos)(1cos)xxxxxxxx(5)22(tan)()sec0secyxexx(6)2secsectansec()3(sec)3sectanxxxxxyxxxxx(7)2(ln)2(lg)3(log)yxxx123123(1)ln10ln2ln10ln2xxxx(8)22222(1)21(1)(1)xxxyxxxx2.求下列函数在给定点处的导数:(1)y=xsinx+12cosx,求π4ddxyx;(2)f(x)=35x+25x,求f′(0)和f′(2);(3)f(x)=254,1,43,1,xxxxx求f′(1).解:(1)11sincossinsincos22dyxxxxxxxdx413sincos(1)244442xdydx(2)223(5)232()(5)5(5)5xfxxxxx317(0),(2)2515ff(3)111()(1)(54)15(1)(1)limlimlim5111xxxfxfxxfxxx72111()(1)431(41)(1)(1)limlimlim111xxxfxfxxxxfxxx1lim(41)5xx(1)(1)(1)5fff3.设p(x)=f1(x)f2(x)…fn(x)≠0,且所有的函数都可导,证明1212()()()()()()()()nnfxfxfxpxpxfxfxfx.证:12123()()()()()()()()nnpxfxfxfxfxfxfxfx121()()()()nnfxfxfxfx()()pxpx121231112()()()()()()()()()()()()()nnnnnfxfxfxfxfxfxfxfxfxfxfxfxfx1212()()()()()()nnfxfxfxfxfxfx.4.求下列函数的导数:(1)y=3ex;(2)y=arctanx2;(3)y=21ex(4)y=(1+x2)·ln(x+21x);(5)y=x2·sin21x;(6)y=cos2ax3(a为常数);(7)y=arccos1x;(8)y=(arcsin2x)2;(9)y=21lnx;(10)y=sinnx·cosnx;(11)y=1111xxxx;(12)y=arcsin11xx;(13)y=lncosarctan(shx);(14)y=2x22ax+22aarcsinxa(a>0为常数).解:(1)33(3)'3xxyexe;8(2)24412()11xyxxx;(3)21211(21)(21)221xxyexexx212111222121xxeexx;(4)2222(1)ln(1)(1)[ln(1)]yxxxxxx222212ln(1)(1)1xxxxxxxx2222112ln(1)(12)121xxxxxxxx22222112ln(1)11xxxxxxxxx222ln(1)1xxxx;(5)222211()sin(sin)yxxxx22221112sincos()xxxxx22231122sincosxxxxx221212sincosxxxx(6)333332cos(cos)2cos(sin)()yaxaxaxaxax233sin2axax;(7)22222111()'1111xxyxxxxxx(8)222arcsin122arcsin(arcsin)2arcsin()2222414xxxxxyxx;(9)2222111ln(1ln)2ln21ln21ln1lnxyxxxxxxx;9(10)1sincoscossin(sin)nnynxxnxxnxn1s
本文标题:微积分(曹定华)(修订版)课后题答案第三章习题详解
链接地址:https://www.777doc.com/doc-4456559 .html