您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 沪科版数学八年级17.2(3)一元二次方程的解法(公式法)
知识回顾用配方法解一元二次方程的一般步骤是什么?二次项系数化1,移项,配方,变形,开方,求解用直接开平方法和配方法解一元二次方程,计算比较麻烦能否研究出一种更好的方法?1、用配方法解下列方程(1)(2)6x2-7x+1=04x2-3x=52知识回顾2.如何用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0)呢?解:2bcxxaa移项,得222)2()2(22abacabxabx配方,得2224()24bbacxaa即ax2+bx=-c二次项系数化为1,得想一想:2224()24bbacxaa即能用直接开平方解吗?什么条件下就能用直接开平方解?不能240bac当,且a≠0时,可以开平方aacbabx2422所以242bbacxa即2422bbacxaa得你能得出什么结论?探究1.为什么在得出求根公式时有限制条件b2-4ac≥0?2224()24bbacxaa20(0)axbxca在用配方法求的根时,得240bac因为负数没有平方根,所以2.在一元二次方程中,如果b2-4ac<0,那么方程有实数根吗?为什么?20(0)axbxca20(0)axbxcaacb42在一元二次方程中,如果b2-4ac<0,那么方程无实数根.这是由于𝒃𝟐-4ac<0时无意义.用公式法解一元二次方程的前提是:1.必需是一般形式的一元二次方程:ax2+bx+c=0(a≠0).2.b2-4ac≥0.22bb4acx.b4ac0.2a概括总结20(0)axbxca242bbacxa一般地,对于一般形式的一元二次方程240bac当时,它的根是240bac()利用这个公式解一元二次方程的方法叫做公式法。这个公式说明方程的根是由方程的系数a、b、c所确定,用这个公式,我们可以由一元二次方程中系数a、b、c的值,直接求得方程的解。求根公式b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字Δ表示它,即Δ=b2-4ac(1)公式叫做一元二次方程的求根公式;(2)利用求根公式解一元二次方程的方法叫求根公式法;一般形式ax2+bx+c=0(a≠0)的一元二次方程的求根公式为:aacbbx242(3)当那么方程有两个相等的实数根,即b2-4ac=0abxx221(a≠0,b2-4ac≥0)例:用公式法解下列方程.(1)2x2-4x-1=0(2)(x-2)(3x-5)=02.计算:b2-4ac的值;3.代入:把有关数值代入公式计算;4.定根:写出原方程的根.1.确定系数:用a,b,c写出各项系数;用公式法解一元二次方程的一般步骤:242bbacxa3、代入求根公式:2、求出的值,并判断是否大于,等于或小于024bac1、把方程化成一般形式,并写出(整系数,a为正的)的值。ab、、c4、写出方程的解:12xx、特别注意:当时方程无实数解240bac2512)1(14112x.2361.25.618.1,618.021xx例2解方程:x²+x-1=0.(精确到0.001)解a=1,b=1,c=-1,代入求根公式,得用计算器求得用公式法解下列方程.(1)x2-4x-7=0(2)2x2-x+1=0(3)5x2-3x=x+1(4)x2+17=8x一、由配方法解一般的一元二次方程ax2+bx+c=0(a≠0)若b2-4ac≥0得)04(2acb242bbacxa求根公式:242bbacxa3、代入求根公式:2、求出的值,并判断是否大于,等于或小于024bac1、把方程化成一般形式,并写出(整系数,a为正的)的值。ab、、c4、写出方程的解:12xx、特别注意:当时无解240bac14二、用公式法解一元二次方程的一般步骤:四、计算一定要细心,尤其是计算b2-4ac的值和代入公式时,符号不要弄错.三、当b2-4ac=0时,一元二次方程有两个相等的实数根.当b2-4ac>0时,一元二次方程有两个不相等的实数根.当b2-4ac<0时,一元二次方程没有实数根.2234随堂练习1.把下列方程化成ax2+bx+c=0的形式,并写出其中a,b,c的值:(1)x²-5x=2;(2)3x²-1=2x;(3)2x(x-1)=x+4;(4)(x+1)²=3x-2.2.用公式法解下列方程:(1)3x²+5x-2=0;(2)2x²+5x-12=0;(3)t²+t+2=0;(4)4x²-x+3=0;(5)p(2-p)=5;(6)0.3x(x-2)+0.4=0.2133213)3(x.3.021333.3213321xx随堂练习3.用公式法解方程:x²-3x-1=0.(精确到0.1)解a=1,b=-3,c=-1,.13)1(14)3(422acb48,4822824222221222nmmxnmmxnmmaacbbx随堂练习4.解关于x的方程:2x²-mx-n²=0.解a=2,b=-m,c=-n²,b²-4ac=(-m)²-4×2×(-n²)=m²+8n²≥0达标测试1.用公式法解方程4x2-12x=3,得到().A.x=B.x=C.x=D.x=2.方程x2+4x+6=0的根是().A.x1=,x2=B.x1=6,x2=C.x1=2,x2=D.x1=x2=-3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是().A.4B.-2C.4或-2D.-4或236236232323232232226填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-,x1·x2=;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3、某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.(2)若使方程为一元二次方程m是否存在?若存在,请求出.你能解决这个问题吗?baca
本文标题:沪科版数学八年级17.2(3)一元二次方程的解法(公式法)
链接地址:https://www.777doc.com/doc-4461547 .html