您好,欢迎访问三七文档
第4讲导数在研究函数性质中的应用及定积分第4讲导数在研究函数性质中的应用及定积分主干知识整合第4讲│主干知识整合1.导数的几何意义2.函数的单调性与导数如果已知函数在某个区间上单调递增(减),则这个函数的导数在这个区间上大(小)于零恒成立.在区间上离散点处导数等于零,不影响函数的单调性,如函数y=x+sinx.3.函数的导数与极值对可导函数而言,某点导数等于零是函数在该点取得极值的必要条件,但对不可导的函数,可能在极值点处函数的导数不存在(如函数y=|x|在x=0处),因此对于一般函数而言,导数等于零既不是函数取得极值的充分条件也不是必要条件.第4讲│主干知识整合4.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值的最小者.第4讲│主干知识整合5.定积分与曲边形面积(1)曲边为y=f(x)的曲边梯形的面积:在区间[a,b]上的连续的曲线y=f(x),和直线x=a,x=b(a≠b),y=0所围成的曲边梯形的面积S=ab|fx|dx.当f(x)≥0时,S=abf(x)dx;当f(x)0时,S=-abf(x)dx.(2)曲边为y=f(x),y=g(x)的曲边形的面积:在区间[a,b]上连续的曲线y=f(x),y=g(x),和直线x=a,x=b(a≠b),y=0所围成的曲边梯形的面积S=ab|f(x)-g(x)|dx.当f(x)≥g(x)时,S=ab[f(x)-g(x)]dx;当f(x)g(x)时,S=ab[g(x)-f(x)]dx.要点热点探究第4讲│要点热点探究►探究点一导数的几何意义的应用例1[2011·湖南卷]曲线y=sinxsinx+cosx-12在点Mπ4,0处的切线的斜率为()A.-12B.12C.-22D.22第4讲│要点热点探究B【解析】对y=sinxsinx+cosx-12求导得到y′=cosxsinx+cosx-sinxcosx-sinxsinx+cosx2=1sinx+cosx2,当x=π4,得到y′x=π4=122+222=12.第4讲│要点热点探究(1)直线y=2x+b是曲线y=lnx(x0)的一条切线,则实数b=________.(2)已知f(x)为偶函数,当x≥0时,f(x)=-(x-1)2+1,满足f[f(a)]=12的实数a的个数为________.第4讲│要点热点探究(1)-ln2-1(2)8【解析】(1)切线的斜率是2,根据导数的几何意义可以求出切点的横坐标,进而求出切点的坐标,切点在切线上,代入即可求出b的值.y′=1x,令1x=2得x=12,故切点为12,ln12,代入直线方程,得ln12=2×12+b,所以b=-ln2-1.第4讲│要点热点探究(2)如图所示,f(x)=12有四个解:-1-22,-1+22,1-22,1+22.所以f(a)=-1-22或f(a)=-1+22或f(a)=1-22,当f(a)=-1-22时,a有2个值对应;当f(a)=-1+22时,a有2个值对应;当f(a)=1-22时,a有4个值对应,综上可知满足f[f(a)]=12的实数a有8个.第4讲│要点热点探究►探究点二导数在研究函数中的应用例2[2011·北京卷]已知函数f(x)=(x-k)2exk.(1)求f(x)的单调区间;(2)若对于任意的x∈(0,+∞),都有f(x)≤1e,求k的取值范围.【解答】(1)f′(x)=1k(x2-k2)exk.令f′(x)=0,得x=±k.当k>0时,f(x)与f′(x)的情况如下:x(-∞,-k)-k(-k,k)k(k,+∞)f′(x)+0-0+f(x)4k2e-10所以,f(x)的单调递增区间是(-∞,-k)和(k,+∞);单调递减区间是(-k,k).第4讲│要点热点探究当k<0时,f(x)与f′(x)的情况如下:所以,f(x)的单调递减区间是(-∞,k)和(-k,+∞);单调递增区间是(k,-k).(2)当k>0时,因为f(k+1)=ek+1k>1e,所以不会有∀x∈(0,+∞),f(x)≤1e.当k<0时,由(1)知f(x)在(0,+∞)上的最大值是f(-k)=4k2e.所以∀x∈(0,+∞),f(x)≤1e,等价于f(-k)=4k2e≤1e.解得-12≤k<0.故当∀x∈(0,+∞),f(x)≤1e时,k的取值范围是-12,0.x(-∞,k)k(k,-k)-k(-k,+∞)f′(x)-0+0-f(x)04k2e-1第4讲│要点热点探究【点评】单调性是函数的最重要的性质,函数的极值、最值等问题的解决都离不开函数的单调性,含有字母参数的函数的单调性又是综合考查不等式的解法、分类讨论的良好素材.函数单调性的讨论是高考考查导数研究函数问题的最重要的考查点.函数单调性的讨论往往归结为一个不等式、特别是一元二次不等式的讨论,对一元二次不等式,在二次项系数的符号确定后就是根据其对应的一元二次方程两个实根的大小进行讨论,即分类讨论的标准是先二次项系数、再根的大小.对于在指定区间上不等式的恒成立问题,一般是转化为函数最值问题加以解决,如果函数在这个指定的区间上没有最值,则可转化为求函数在这个区间上的值域,通过值域的端点值确定问题的答案.第4讲│要点热点探究例3[2011·江西卷]设f(x)=-13x3+12x2+2ax.(1)若f(x)在23,+∞上存在单调递增区间,求a的取值范围;(2)当0a2时,f(x)在[1,4]上的最小值为-163,求f(x)在该区间上的最大值.第4讲│要点热点探究【解答】(1)由f′(x)=-x2+x+2a=-x-122+14+2a,当x∈23,+∞时,f′(x)的最大值为f′23=29+2a;令29+2a>0,得a>-19,所以,当a>-19时,f(x)在23,+∞上存在单调递增区间.(2)令f′(x)=0,得两根x1=1-1+8a2,x2=1+1+8a2.所以f(x)在(-∞,x1),(x2,+∞)上单调递减,在(x1,x2)上单调递增.当0<a<2时,有x1<1<x2<4,所以f(x)在[1,4]上的最大值为f(x2).又f(4)-f(1)=-272+6a<0,即f(4)<f(1),所以f(x)在[1,4]上的最小值为f(4)=8a-403=-163,得a=1,x2=2,从而f(x)在[1,4]上的最大值为f(2)=103.第4讲│要点热点探究已知函数f(x)=(ax2-x)lnx-12ax2+x.(a∈R).(1)当a=0时,求曲线y=f(x)在(e,f(e))处的切线方程(e=2.718…);(2)求函数f(x)的单调区间.【解答】(1)当a=0时,f(x)=x-xlnx,f′(x)=-lnx,所以f(e)=0,f′(e)=-1.所以当a=0时,曲线y=f(x)在(e,f(e))处的切线方程为y=-x+e.(2)函数f(x)的定义域为(0,+∞).f′(x)=(ax2-x)1x+(2ax-1)lnx-ax+1=(2ax-1)lnx,①当a≤0时,2ax-10,在(0,1)上f′(x)0,在(1,+∞)上f′(x)0,所以此时f(x)在(0,1)上单调递增,在(1,+∞)上单调递减;第4讲│要点热点探究②当0a12时,在(0,1)和12a,+∞上f′(x)0,在1,12a上f′(x)0,所以此时f(x)在(0,1)和12a,+∞上单调递增,在1,12a上单调递减;③当a=12时,在(0,+∞)上f′(x)≥0且仅有f′(1)=0,所以此时f(x)在(0,+∞)上单调递增;④当a12时,在0,12a和(1,+∞)上f′(x)0,在12a,1上f′(x)0,所以此时f(x)在0,12a和(1,+∞)上单调递增,在12a,1上单调递减.第4讲│要点热点探究►探究点三定积分例4(1)[2011·福建卷]01(ex+2x)dx等于()A.1B.e-1C.eD.e+1(2)[2011·课标全国卷]由曲线y=x,直线y=x-2及y轴所围成的图形的面积为()A.103B.4C.163D.6(1)C(2)C【解析】(1)因为F(x)=ex+x2,且F′(x)=ex+2x,则01(ex+2x)dx=(ex+x2)|10=(e+1)-(e0+0)=e,故选C.第4讲│要点热点探究(2)如图,由y=x,y=x-2解得x=4或x=1.经检验x=1为增根,∴x=4,∴B(4,2),又可求A(0,-2),所以阴影部分的面积S=04(x-x+2)dx=23x32-x22+2x40=163.【点评】计算定积分的基本方法就是根据微积分基本定理,其关键是找到一个函数使得这个函数的导数是被积函数,这实际上是导数运算的逆运算;使用定积分的方法求曲边形面积时,要根据围成这个曲边形的直线和曲线的相对位置确定是哪个函数的、在什么区间上的定积分,求曲边形面积可以使用x为积分变量,也可以使用y为积分变量,本例第(2)问如果使用y为积分变量,所求的面积由两部分组成,一个是下方的等腰直角三角形,一个是定积分02(y+2-y2)dy.第4讲│要点热点探究在函数的解答题中有一类是研究不等式或是研究方程根的情况,基本的题目类型是研究在一个区间上恒成立的不等式(实际上就是证明这个不等式),研究不等式在一个区间上成立时不等式的某个参数的取值范围,研究含有指数式、对数式、三角函数式等超越式的方程在某个区间上的根的个数等,这些问题依据基础初等函数的知识已经无能为力,就需要根据导数的方法进行解决.使用导数的方法研究不等式和方程的基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数.►创新链接3用导数研究不等式和方程第4讲│要点热点探究例5[2011·课标全国卷]已知函数f(x)=alnxx+1+bx,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1)求a,b的值;(2)如果当x>0,且x≠1时,f(x)>lnxx-1+kx,求k的取值范围.【解答】(1)f′(x)=ax+1x-lnxx+12-bx2,由于直线x+2y-3=0的斜率为-12,且过点(1,1),故f1=1,f′1=-12,即b=1,a2-b=-12,解得a=1,b=1.【分析】(1)问关键能通过题干信息中的点(1,f(1))“处”与切线方程的斜率列出方程组;(2)问关键是正确提取分类的条件.第4讲│要点热点探究(2)由(1)知f(x)=lnxx+1+1x,所以f(x)-lnxx-1+kx=11-x22lnx+k-1x2-1x.考虑函数h(x)=2lnx+k-1x2-1x(x0),则h′(x)=k-1x2+1+2xx2.①设k≤0,由h′(x)=kx2+1-x-12x2知,当x≠1时,h′(x)<0,而h(1)=0,故当x∈(0,1)时,h(x)>0,可得11-x2h(x)>0;当x∈(1,+∞)时,h(x)<0,可得11-x2h(x)>0.从而当x>0,且x≠1时,f(x)-lnxx-1+kx>0,即f(x)>lnxx-1+kx.第4讲│要点热点探究②设0<k<1,由于当x∈1,11-k时,(k-1)(x2+1)+2x>0,故h′(x)0,而h(1)=0,故当x∈1,11-k时,h(x)0,可得11-x2h(x)0.与题设矛盾.③设k≥1,此时h′(x)>0,而h(
本文标题:2012届高考数学二轮复习精品课件(课标版)专题1 第4讲 导数在研究函数性质中的应用及定积分
链接地址:https://www.777doc.com/doc-4482526 .html