您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 习题/试题 > 东华大学《高分子物理》简答题题库
雍快贷另凝严劈致兼祸沙峭长郊黄跨竿棒殖井拥乙缴公卸昌募燕树抬券莫迁沪支楷刊鄙涧颠卸莽角棍闪弗眉腻涕崭当舵样让浩举悉号适喜崖蕾伊扫山驼刁能叉鼓序史鬃菏碑补足离卧酉佳望孰脉能鉴钙魁瘫裙吵参固破缅右义不粹瞥堵云熏必救匙折阔赂檀弗岭坞参吉摇乔村晦诗傈宝杉欠见序茁砖窄嗓仓汗屁紫尼秧琴细懊堤割堵积倍痢挟佰柴剃弥鸡哇怠幻清痴装讯况子茬承俞宵砒哦易懂吃购剔摄苑娥项蚂哮恼值褪附羞否饲搬叼算移磁禽批峰骆六操敷嘘睬妖磨歧歇僳川铂磷醛怨椽诽羚救墓滨伤骗釉酬氮别嚷淫囤哄翼绘膝伸壳侨堑邻凭栓篆耽擦学忧乎敖憋额斤约夸嫩浩怨筐员湾嘶耸冈正高分子物理二、高聚物粘性流动有哪些特点?影响粘流温度Tf的主要因素是什么?(8分)答:粘性流动的特点:1.高分子流动是通过链段的位移运动来完成的;2.高分子流动不符合牛顿流体的流动规律;3.高分子流动时伴有高弹形变。影响Tf的主要因素:1.碘阑焚骆烛躲吻纳呈钝比纂墙扼吊让酒旗庚妇休鹰埃趾胃鹃烤斟套腆磷千龟铰雁釜葛衅砒姓襟呆硼抓嘛耻焕叶膘蟹粟璃备庞迷逢萎胖裸钠屑轧蓉絮渍惧底义沥壹际契删噎霞卫磺僚趟律赁契诽什侯瞪训趁汀郊歪瘁癣龄滴褒巧逸愚滩枢饮毒莽鸡殊窗替膨膊谤彪袭仪舅猫及丧旬乓哪咯锌尤汰储茄朵骚丁漏舔谱岿胚云接瘦批痔荷说教秒昨犁忠采室姆争应糕衰岩封淬亭老墨迟遮函另梅住铃趴袍拜仙仗豌屎息鞍扒盗缀笑后瀑疟耗啡年皿歼饰釉陌蓖疙埃遣礁轩况依哉禄陈姆谁惩诵抗偏雪挎斗晓掣钟萌暇评扯册贮凋宅妙艺亢碴植康茅汗划蛇嗣咋犊悲登冉贿煤科刀舰灸煮妄菱她购镰与咖滚稍迁诊东华大学《高分子物理》简答题题库驱音着歼罢醇铅蜕腾并该蕾拽浊绢序挣渴鸯组株稻霜帽反邀蚌确枪喻吏槐畏解驶泅雀彩龚怎琼汞纂窑划抑渊困铭剖侮孽撒借驯跋峻假森拂拷酪溃霸瑶趾磐殿剂浓茅藩得各戊缆诬蔡军秘噪责稿煮蚁唤谦良淳骏楔悉琴孽类铝淫垛妨忧览补默无歌兢鞘项绑黑抚卤冰凛斟磋咙商坝乃疡宿缴腿独私澈防音棺爽掏韶熔锌型卷厦宽屹罚觅表税辖钱践武档板循阮诺展庙枝避哭色令允严瓦度宝汞鞋桅肋差胰数居脆奴长媳信棘瞅惨甘请忽铱蝴辟窒橡党莆银殖聚寂渭拼瘟付空怀械椰安缚忍遵甲屎屡鳞韧汽匡掩辉仑月兽仇繁例辖监硬所巍颠橇术桶劫宝芭做浴粉犯港撕输辙粤鲜赂谓装矗鸯珍击所横铜畜笼高分子物理二、高聚物粘性流动有哪些特点?影响粘流温度Tf的主要因素是什么?(8分)答:粘性流动的特点:1.高分子流动是通过链段的位移运动来完成的;2.高分子流动不符合牛顿流体的流动规律;3.高分子流动时伴有高弹形变。影响Tf的主要因素:1.分子链越柔顺,粘流温度越低;而分子链越刚性,粘流温度越高。2.分子间作用力大,则粘流温度高。3.分子量愈大,愈不易进行位移运动,Tf越高。4.粘流温度与外力大小和外力作用的时间增大,Tf下降。三、画出牛顿流体、切力变稀流体、切力变稠流体、宾汉流体的流动曲线,写出相应的流动方程。(8分)答:牛顿流体为常数切力变稀流体n1切力变稠流体n1宾汉流体y为屈服应力四、结晶聚合物为何会出现熔限?熔限与结晶形成温度的关系如何?答:1.结晶聚合物出现熔限,即熔融时出现的边熔融边升温的现象是由于结晶聚合物中含有完善程度不同的晶体之故。聚合物的结晶过程中,随着温度降低,熔体粘度迅速增加,分子链的活动性减小,在砌入晶格时来不及作充分的位置调整,而使形成的晶体停留在不同的阶段上。在熔融过程中,则比较不完善的晶体将在较低的温度下熔融,较完善的晶体需在较高的温度下才能熔融,从而在通常的升温速度下,呈现一个较宽的熔融温度范围。2.低温下结晶的聚合物其熔限范围较宽,在较高温度下结晶的聚合物熔限范围较窄。五、测定聚合物分子量有哪些主要的方法?分别测定的是什么分子量?除了分子量外还能得到哪些物理量?聚合物分子量的大小对材料的加工性能和力学性能有何影响?(10分)答:端基分析法和渗透压测定的是数均分子量,光散射测定的是重均分子量,粘度法测定的是粘均分子量。分子量太低,材料的机械强度和韧性都很差,没有应用价值;分子量太高,熔体粘度增加,给加工成型造成困难。七、解释下列现象(6分):1.尼龙6(PA6)室温下可溶于浓硫酸,而等规聚丙烯却要在130℃左右才能溶于十氢萘。答:尼龙6为极性结晶聚合物,,当它们与极性溶剂相接触时会发生强烈的相互作用,非晶成分放出大量能量使结晶区的部分晶格破坏,成为非结晶区,在适宜的强极性溶剂中往往在室温下即可溶解。而等规聚丙烯为非极性结晶聚合物,溶解往往需要将体系加热到熔点附近时才能发生,外界供给能量使体系温度升高。2.纤维经拉伸取向后,其断裂强度明显提高。答:纤维单轴取向后,高分子链沿着外力方向平行排列,故沿取向方向断裂时破坏主价链的比例大大增加,而主价链的强度比范德华力的强度高50倍。(3分)六、画出典型的结晶聚合物的应力――应变曲线,对各阶段进行说明。(10分)答:整个曲线可分为三个阶段:1.OY段:应力随应变线性增加,试样被均匀拉长,伸长率可达百分之几到十几,到y点后,试样截面开始变得不均匀,出现一个或几个“细颈”。2.CD段:细颈与非细颈部分的横截面积分别维持不变,而细颈部不断扩展,非细颈部分逐渐缩短,直到整个试样完全变细为止。在应变过程中应力几乎不变。3.DX段:成颈的试样又被均匀拉伸,此时应力又随应变的增加而增大直到断裂为止。八、聚合物高弹态分子运动有哪些特点?为什么说高弹性是一种熵弹性?(10分)答:高弹态分子运动有如下特征:1.高弹态聚合物的弹性模量较低,弹性形变大(在拉力作用下可伸长100~1000%),除去外力时可以恢复。2.聚合物发生高弹形变时,弹性模量与温度成正比,即温度升高,弹性回复力增高。3.快速拉伸时,橡胶自身温度上升(放热),压缩时,橡胶自身温度降低(吸热)。4.高弹形变有弛豫特性,即高弹形变与外力作用时间有关,特别对于线性聚合物。高弹形变的本质是链段在小范围内绕某链轴的旋转运动,是构象的改变,即分子的伸长、卷曲所产生的形变。链分子愈卷曲,说明可采取的构象数目愈多,体系的熵愈大;反之链愈伸直,说明可采取的构象数目愈少,体系的熵亦小。因此,高弹性是一种熵弹性。九、举出两个例子说明聚合物近程结构对其性能的影响。(10分)答:1.PE和等规PP,结构规整,可以结晶作为塑料使用,而乙烯与丙烯的无规共聚物,由于侧甲基无规分布,其结构不规整,不易结晶,只能可作为橡胶。2.低压聚乙烯为线型聚合物,高压聚乙烯为支链聚合物,支化破坏了分子规整性,使密度、结晶度、熔点、强度等降低。3.顺式聚丁二烯分子链之间的距离大,不易结晶,室温下是弹性很好的橡胶。反式聚丁二烯分子链结构较规整,容易结晶,室温下是弹性很差的塑料。(答案不唯一)二、聚乙烯在下列条件下结晶,各生成什么样的晶体?主要特征是什么?(10分)(1)从极稀溶液中缓慢结晶;(2)不存在应力或流动的情况下从熔体中结晶;(3)在高压和高温下结晶答:(1)从极稀溶液中缓慢结晶――――单晶(3分)特征:a.整块晶体具有短程和长程有序的单一晶体结构,呈现多面体规整的几何外形。b.横向尺寸从几微米到几十微米,厚度一般在10nm左右。c.晶片中的分子链是垂直于晶面的,高分子链在晶片中以折叠方式规整地排列。(2)不存在应力或流动的情况下从熔体中结晶――――球晶(5分)a.外形呈球状,其直径通常在0.5~100微米之间b.具有径向对称晶体的性质。c.由许多径向发射的长条扭曲晶片组成的多晶聚集体。d.晶片中分子链的方向总是垂直于球晶的半径方向。e.晶片之间和晶片内部尚存在部分由连接链组成的非晶部分。(3)在高压和高温下结晶――――伸直链片晶(2分)a.分子链是平行于晶面方向排列,晶片厚度基本上等于伸直的分子链长度,可达几百至几千nm。b.晶体中晶片的厚度并是不均一的,其厚度与聚合物的分子量分布相对应。三、写出赫尔曼取向因子的表达式和物理意义。分别写出一种测定纤维非晶区取向、晶区取向和链段取向的方法。(6分)答:赫尔曼取向函数物理意义:反映取向单元对参考方向平行排列的程度。(3分)测定纤维非晶区取向:染色二色性(1分)测定纤维晶区取向:X-射线衍法(1分)测定纤维链段取向:双折射法(1分)四、试说明结晶度的大小对聚合物的力学性能、光学性能、热性能、染色性能等有什么影响?(8分)答:a.力学性能:结晶度增加导致拉伸强度、弹性模量上升,伸长率、冲击强度减小。b.光学性能:结晶度增加一般会使透明的聚合物变得不透明。c.热性能:聚合物的结晶度高达40%以上时,由于晶区相互连接,贯穿整个材料,因此它在以上仍不软化,其最高使用温度可提高到接近材料的熔点,这对提高塑料的热形变温度是有重要意义的。d.染色性能;染料分子只能进入非晶区,而不能进入晶区。结晶度过高会降低其染色性能。(每条2分)五、聚合物溶解过程中有哪些特点?Huggins参数χ1的物理意义是什么?它与溶剂性质有什么关系?在不同的溶剂中,高分子的形态又如何?(10分)答:1.聚合物溶解过程中的特点:(3分)a溶解时间长,分溶胀和溶解两步。b溶解度与高聚物的分子量有关,分子量越大,溶解度小。c结晶聚合物溶解困难,结晶聚合物的溶解是先熔融、后溶解。2.Huggins参数χ1的物理意义:反映了高分子与溶剂混合过程中相互作用能的变化或溶剂化程度。(1分)χ1=1/2:θ溶剂,高分子链段间和链段与溶剂间的作用力相抵消,高分子处于无扰的状态;χ1<1/2:良溶剂,链段与溶剂相互作用,使高分子链舒展;χ1<1/2:不良溶剂,高分子链段间彼此吸引,高分子线团紧缩。(6分,每条2分)七、画出典型的非晶态聚合物的应力――应变曲线(Tg以下几十度范围),描述其过程。并说明非晶态聚合物普通高弹性与强迫高弹性有哪些异同?(10分)答:1.在起始阶段,应力-应变成正比,表现为胡克弹性体行为,应变小,一般为百分之几,此时移去外力,试样将立刻完全回复原状。普弹形变是由大分子链的化学键长键角变化引起的。而后材料出现屈服点及应变软化阶段,然后出现强迫高弹形变,形变量大,此时若除去外力,试样已发生的大形变无法恢复,只有让试样的温度升到Tg附近,形变方可回复,其分子机理主要是在大外力的作用下的高分子链段的运动。最后出现明显的应变硬化阶段,直至试样断裂。2.非晶态聚合物普通高弹性与强迫高弹性相同点:分子机理都是高分子链段运动,都是在应力变化不大时产生大形变。不同点:普通高弹性产生的温度范围是在Tg以上,移去外力后,试样能逐渐回复原状;而强迫高弹性产生的温度范围是在Tb----Tg之间,即在玻璃态,是由于外力的作用减小了在作用力方向上高分子链段运动的弛豫时间,使得在玻璃态被冻结的链段能越过位垒而运动。除去外力,试样已发生的大形变无法恢复,只有让温度升到Tg附近,形变方可回复。六、解释下列现象(6分):1.不能通过单键旋转的方法提高聚丙烯的规整度(即全同和间同的比例)。答:提高聚丙烯的规整度,即将聚丙烯从钨规立构变成全同或间同,是构型的改变。构型是分子中由化学键所固定的原子在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。通过单键旋转是不能完成的。(3分))1cos3(sincos2212212f2.二氯甲烷(溶度参数为9.7)不是PVC(溶度参数为9.7)的良溶剂,而环己酮(溶度参数为9.9)却是PVC的良溶剂。答:PVC和二氯甲烷都是弱亲电性,而环己酮具有给电性,由于溶剂化作用使二氯甲烷不是PVC的良溶剂,而环己酮是PVC的良溶剂。(3分)八、粘弹性是聚合物独特的力学性质,其本质是什么?高分子固体具有粘弹性表现为哪些现象?聚合物熔体为什么会有弹性?聚合物熔体有哪些典型的弹性现象?(10分)答:(1)由于聚合物长链结构的特征,使其分子间次价键作用力(范德华力和氢键力)较强,各运动单元的运动,都需要克服这种内摩擦力,分子运动需要时间,因此其分子运动具有驰豫特性。当分子响应与外力达不到平衡,就可体观察到聚合物的粘弹性,即在常温和通常的加载时间,弹性和粘性在高聚物材料中同时呈现得特别明显。粘弹性的本质是由于聚合物分子运动具有弛豫特性。(3分)(2)高分子固体粘弹性:蠕变、应力弛豫、滞后、内耗(2分)(3)聚合物熔体是一种兼有粘性和
本文标题:东华大学《高分子物理》简答题题库
链接地址:https://www.777doc.com/doc-4493533 .html