您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 北师大版七年级数学下册、探索三角形全等的条件(二)
1.只给出一个条件不能保证所画的三角形一定全等2.只给出两个条件不能保证所画的三角形一定全等3.只给出三个条件画三角形,你能说出有哪几种可能的情况?(1)三个内角分别相等的两个三角形不一定全等。(2)三边分别相等的两个三角形全等。1、如图,已知AB=DC,AC=DB,那么∠A=∠D.说明理由.AB=DC()AC=DB()BC=CB()∴△ABC≌△DCB()∴∠A=∠DABCD已知已知公共边SSS(全等三角形的对应角相等)证明:∵在△ABE与△ACD中2、如图,已知AC=AD,BC=BD,那么AB是∠DAC的平分线.AC=AD()BC=BD()AB=AB()∴△ABC≌△ABD()∴∠1=∠2∴AB是∠DAC的平分线ABCD12(全等三角形的对应角相等)已知已知公共边SSS证明:∵在△ABE与△ACD中一、议一议小明踢球时不慎把一块三角形玻璃打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块于原来一样的三角形玻璃呢?如果可以,带哪块去合适呢?为什么?ABC图①已知一个三角形的两个角和一条边,那么这两个角与这一条边的位置关系有几种可能的情况?二、想一想分析:不妨先固定两个角,再确定一条边两角:∠A、∠B一边:ABC图③ABC图②ABAC或BC1、按要求画出三角形,并与同伴进行交流。三、做一做两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。结论:(1)∠A=60°、∠B=80°、AB=2cm(2)∠A=60°、∠B=45°、AB=3cm2、按要求画出三角形,并与同伴进行交流。三、做一做两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”结论:(1)∠A=60°、∠B=45°、AC=3cm(2)∠A=60°、∠B=45°、BC=3cm两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。(ASA)全等三角形的判定定理2两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”全等三角形的判定定理3(AAS)1、如图,AB=AC,∠B=∠C,那么△ABE和△ACD全等吗?为什么?证明:∵在△ABE与△ACD中∠B=∠C(已知)AB=AC(已知)∠A=∠A(公共角)∴△ABE≌△ACD(ASA)四、试一试AEDCB2、如图,AD=AE,∠B=∠C,那么BE和CD相等么?为什么?证明:∵在△ABE与△ACD中∠B=∠C(已知)∠A=∠A(公共角)AE=AD(已知)∴△ABE≌△ACD(AAS)∴BE=CD(全等三角形对应边相等)AEDCB利用“角边角”可知,带B块去,可以配到一个与原来全等的三角形玻璃。AB议一议五、练一练1、如图,已知AB=DE,∠A=∠D,,∠B=∠E,则△ABC≌△DEF的理由是:2、如图,已知AB=DE,∠A=∠D,,∠C=∠F,则△ABC≌△DEF的理由是:ABCDEF角边角(ASA)角角边(AAS)3、如图,在△ABC中,∠B=∠C,AD是∠BAC的角平分线,那么AB=AC吗?为什么?证明:∵AD是∠BAC的角平分线∴∠1=∠2(角平分线定义)在△ABD与△ACD中∠1=∠2(已证)∠B=∠C(已知)AD=AD(公共边)∴△ABD≌△ACD(AAS)∴AB=AC(全等三角形对应边相等)12ABCD(1)图中的两个三角形全等吗?请说明理由.3535110110全等,因为两角和其中一角的对边对应相等的两个三角形全等.ABCDDBCABCDABCBC(已知)(已知)(公共边)练一练证明:在△ABC与△DBC中∵∴△ABC≌△DBC(AAS)(2)已知和中,=,AB=AC.ABEACDBC求证:(1)ABCEDO证明:,中和在ACDABECBACABAAACDABE)(ASAACDABE(2)BD=CEADAE(全等三角形对应边相等)ACABAEACADABCEBD即(已知)(已知)(公共角)(全等三角形对应边相等)(等式的性质)如图,AB∥CD,AD∥BC,那么AB=CD吗?为什么?AD与BC呢?ABCD1234证明:∵AB∥CD,AD∥BC(已知)∴∠1=∠2∠3=∠4(两直线平行,内错角相等)在△ABC与△CDA中∠1=∠2(已证)AC=AC(公共边)∠3=∠4(已证)∴△ABC≌△CDA(ASA)∴AB=CDBC=AD(全等三角形对应边相等)五、思考题练一练:1、完成下列推理过程:在△ABC和△DCB中,∠ABC=∠DCB∵BC=CB∴△ABC≌△DCB()ASAABCDO1234(公共边)∠1=∠2∠3=∠4AAS2、请在下列空格中填上适当的条件,使△ABC≌△DEF。在△ABC和△DEF中∵∴△ABC≌△DEF()ABCDEFSSSAB=DEBC=EFAC=DFASA∠A=∠DAB=DE∠B=∠DEFAC=DF∠ACB=∠FAAS∠B=∠DEFBC=EF∠ACB=∠FBC=EF想一想:如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么?ABCDO我的思考过程如下:两角与夹边对应相等∠B=∠EBC=EF∠C=∠F∴ΔABC≌DEF(ASA)ABCDEF三角形全等的判定定理2:在△ABC和△DEF中ABCDEF三角形全等的判定公理3:在△ABC和△DEF中∠B=∠E∠C=∠FBC=EF∴ΔABC≌DEF(ASA)今天我们经历了对符合两角一边的条件的所有三角形进行画图验证,探索出三角形全等的另两个条件,它们分别是:两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”小结:相等吗?与,那么且,于,于中,)已知(DCBDCFBEFADCFEADBEABC2DABCEFADCFADBE,证明:垂直的定义)(90CFDBED中和在CDFBDE(已证)CFDBED(对顶角相等)CDFBDE(已知)CFBE)(AASCDFBDE等)(全等三角形对应边相CDBD(3)如图,AC、BD交于点,AC=BD,AB=CD.求证:BC)1(ODOA)2(ABCDO练一练再创辉煌:1、如图∠ACB=∠DFE,BC=EF,根据ASA或AAS,那么应补充一个直接条件--------------------------------------,(写出一个即可),才能使△ABC≌△DEFABCDEF∠B=∠E或∠A=∠D如图,AB∥CD,AD∥BC,那么AB=CD吗?为什么?AD与BC呢?ABCD1234证明:∵AB∥CD,AD∥BC(已知)∴∠1=∠2∠3=∠4(两直线平行,内错角相等)∴在△ABC与△CDA中∠1=∠2(已证)AC=AC(公共边)∠3=∠4(已证)∴△ABC≌△CDA(ASA)∴AB=CDBC=AD(全等三角形对应边相等)五、思考题
本文标题:北师大版七年级数学下册、探索三角形全等的条件(二)
链接地址:https://www.777doc.com/doc-4496265 .html