您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2011年高考全国卷理科数学新课标卷及解析
2011年普通高等学校招生全国统一考试理科数学2011年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)复数212ii的共轭复数是(A)35i(B)35i(C)i(D)i(2)下列函数中,既是偶函数又在+(0,)单调递增的函数是(A)3yx(B)1yx(C)21yx(D)2xy(3)执行右面的程序框图,如果输入的N是6,那么输出的p是(A)120(B)720(C)1440(D)5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A)13(B)12(C)23(D)34(5)已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线2yx上,则cos2=2011年普通高等学校招生全国统一考试理科数学(A)45(B)35(C)35(D)45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(7)设直线L过双曲线C的一个焦点,且与C的一条对称轴垂直,L与C交于A,B两点,AB为C的实轴长的2倍,则C的离心率为(A)2(B)3(C)2(D)3(8)512axxxx的展开式中各项系数的和为2,则该展开式中常数项为(A)-40(B)-20(C)20(D)40(9)由曲线yx,直线2yx及y轴所围成的图形的面积为(A)103(B)4(C)163(D)6(10)已知a与b均为单位向量,其夹角为,有下列四个命题12:10,3Pab22:1,3Pab3:10,3Pab2011年普通高等学校招生全国统一考试理科数学4:1,3Pab其中的真命题是(A)14,PP(B)13,PP(C)23,PP(D)24,PP(11)设函数()sin()cos()(0,)2fxxx的最小正周期为,且()()fxfx,则(A)()fx在0,2单调递减(B)()fx在3,44单调递减(C)()fx在0,2单调递增(D)()fx在3,44单调递增(12)函数11yx的图像与函数2sin(24)yxx的图像所有交点的横坐标之和等于(A)2(B)4(C)6(D)8第Ⅱ卷本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须做答。第22题~第24题为选考题,考生根据要求做答。二、填空题:本大题共4小题,每小题5分。2011年普通高等学校招生全国统一考试理科数学(13)若变量,xy满足约束条件329,69,xyxy则2zxy的最小值为。(14)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点12,FF在x轴上,离心率为22。过1F的直线L交C于,AB两点,且2ABFV的周长为16,那么C的方程为。(15)已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23ABBC,则棱锥OABCD的体积为。(16)在ABCV中,60,3BAC,则2ABBC的最大值为。三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)等比数列na的各项均为正数,且212326231,9.aaaaa(Ⅰ)求数列na的通项公式;(Ⅱ)设31323loglog......log,nnbaaa求数列1nb的前n项和.(18)(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。ABCDP2011年普通高等学校招生全国统一考试理科数学(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为2,942,941024,102tytt从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数4124232102011年普通高等学校招生全国统一考试理科数学(20)(本小题满分12分)在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足//MBOAuuuruur,MAABMBBAuuuruuuruuuruur,M点的轨迹为曲线C。(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。(21)(本小题满分12分)已知函数ln()1axbfxxx,曲线()yfx在点(1,(1))f处的切线方程为230xy。(Ⅰ)求a、b的值;(Ⅱ)如果当0x,且1x时,ln()1xkfxxx,求k的取值范围。请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。做答时请写清题号。(22)(本小题满分10分)选修4-1:几何证明选讲如图,D,E分别为ABC的边AB,AC上的点,且不与ABC的顶点重合。已知AE的长为n,AD,AB的长是关于x的方程2140xxmn的两个根。(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若90A,且4,6mn,求C,B,D,E所在圆的半径。EDCBA2011年普通高等学校招生全国统一考试理科数学(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为2cos22sinxy(为参数)M是C1上的动点,P点满足2OPOMuuuvuuuv,P点的轨迹为曲线C2(Ⅰ)求C2的方程(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线3与C1的异于极点的交点为A,与C2的异于极点的交点为B,求AB.(24)(本小题满分10分)选修4-5:不等式选讲设函数()3fxxax,其中0a。(Ⅰ)当1a时,求不等式()32fxx的解集;(Ⅱ)若不等式()0fx的解集为|1xx,求a的值。2011年普通高等学校招生全国统一考试理科数学新课标卷(黑龙江、吉林、河南、宁夏、新疆、山西)参考答案一、选择题2011年普通高等学校招生全国统一考试理科数学(1)C(2)B(3)B(4)A(5)B(6)D(7)B(8)D(9)C(10)A(11)A(12)D(1)复数212ii的共轭复数是(A)35i(B)35i(C)i(D)i解析:212ii=(2)(12),5iii共轭复数为C(2)下列函数中,既是偶函数又在+(0,)单调递增的函数是(A)3yx(B)1yx(C)21yx(D)2xy解析:由图像知选B(3)执行右面的程序框图,如果输入的N是6,那么输出的p是(A)120(B)720(C)1440(D)5040解析:框图表示1nnana,且11a所求6a720选B(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为2011年普通高等学校招生全国统一考试理科数学(A)13(B)12(C)23(D)34解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193选A(5)已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线2yx上,则cos2=解析:由题知tan2,222222cossin1tan3cos2cossin1tan5选B(A)45(B)35(C)35(D)45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为解析:条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。故选D(7)设直线L过双曲线C的一个焦点,且与C的一条对称轴垂直,L与C交于A,B两点,AB为C的实轴长的2倍,则C的离心率为(A)2(B)3(C)2(D)3解析:通径|AB|=222baa得2222222baaca,选B2011年普通高等学校招生全国统一考试理科数学(8)512axxxx的展开式中各项系数的和为2,则该展开式中常数项为(A)-40(B)-20(C)20(D)40解析1.令x=1得a=1.故原式=511()(2)xxxx。511()(2)xxxx的通项521552155(2)()(1)2rrrrrrrrTCxxCx,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出1x;若第1个括号提出1x,从余下的括号中选2个提出1x,选3个提出x.故常数项=223322335353111(2)()()(2)XCXCCCXXXX=-40+80=40(9)由曲线yx,直线2yx及y轴所围成的图形的面积为(A)103(B)4(C)163(D)6解析;用定积分求解43242002116(2)(2)|323sxxdxxxx,选C(10)已知a与b均为单位向量,其夹角为,有下列四个命题12:10,3Pab22:1,3Pab3:10,3Pab2011年普通高等学校招生全国统一考试理科数学4:1,3Pab其中的真命题是(A)14,PP(B)13,PP(C)23,PP(D)24,PP解析:222cos22cos1ababab得,1cos2,20,3。由222cos22cos1ababab得1cos2,3。选A(11)设函数()sin()cos()(0,)2fxxx的最小正周期为,且()()fxfx,则(A)()fx在0,2单调递减(B)()fx在3,44单调递减(C)()fx在0,2单调递增(D)()fx在3,44单调递增解析:()2sin()4fxx,所以2,又f(x)为偶函数,,424kkkz,()2sin(2)2cos22fxxx,选A(12)函数11yx的图像与函数2sin(24)yxx的图像所有交点的横坐标之和等于(A)2(B)4(C)6(D)8解析:图像法求解。11yx的对称中心是(1,0)也是2sin(24)yxx的中心,24x他们的图像在x=1的左侧有4个交点,则x=1右侧必有4个交点。不妨把他们的横坐标由小到大设为1,2345678,,,,,,xxxxxxxx,则182736452x
本文标题:2011年高考全国卷理科数学新课标卷及解析
链接地址:https://www.777doc.com/doc-4500031 .html