您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 2018年长沙市中考数学试题-详细解答
-2A2-2B2-2C2-2D22018年长沙市初中学业水平考试数学详细解答一、选择题(在下列各题的四个选项中,只有一项是符合题意的。共12小题,每小题3分,共36分)1、-2的相反数是(C)A、-2B、12C、2D、12相反数,绝对值等概念考点2、据统计,2017年长沙市地区生产总值为10200亿元,经济问题迈入“万亿俱乐部”,数据10200用科学记数法表示为()A、50.10210B、31.0210C、41.0210D、51.0210科学记数法考点:六个字点点,数数,模样正确答案选C3、下列计算正确的是()A、235aaaB、32221C、235()xxD、532mmm合并同类二次根式(项),幂的运算等:正确答案选D,(同底数幂相除,底数不变,指数相减)4、下列长度的三条线段,能组成三角形的是()A、4,5,9cmcmcmB、8,8,15cmcmcmC、5,5,10cmcmcmD、6,7,14cmcmcm三角形三边的关系,另两边之差<一边<另两边之和。正确答案选B5、下列四个图形中,既是轴对称图形又是中心对称图形的是()轴对称图形与中心对称图形的概念。正确答案选A6、不等式组20240xx的解集在数轴上表示正确的是ABCD第18题图CODBA第14题图其他10%烈士公园 30%岳麓山 20%橘子洲 15%世界之窗xy第10题图80.60.825285868一元一次不等式组的解法及在数轴上的表示方法。正确答案选C7、将下面左侧的平面图形绕轴l旋转一周,可得到的立体图形是()旋转可得的立体图形。正确答案选D8、下列说法正确的是()A、任意掷一枚质地均匀的硬币10次,一定有5次正面朝上B、天气预报说“明天降水概率为40%”,表示明天有40%的时间在下雨C、“篮球在罚球线上投筐一次,投中”为随机事件D、“a是实数,0a”是不可能事件统计知识点正确答案选C9、估计101的值A、在2和3之间B、在3和4之间C、在4和5之间D、在5和6之间找到10中哪两个整数之间,就可以解决问题了。91016,即3104正确答案选C10、小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家。下图反映了这个过程,小明离家距离y与时间x的对应关系。根据图像下列说法正确的是()A、小明吃早餐用了25minB、小明读报用了30minC、食堂到图书馆的距离为0.8kmD、小明从图书馆回家的速度为0.8/minkm条形统计图上找到需要的信息:小明吃早餐用了25-8=17分钟,小明读报用了58-28=30分钟;食堂到图书馆的距离为0.8-0.6=0.2千米,小明从图书馆回家的距离为0.8千米,时间为68-58=10分钟,故速度为0.8100.08/minkm正确答案选B11、我国南宋茂名数学家秦九韶的著作《数书九章》里记载有这样一道题目上:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形的沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制单位,1里=500米,则该沙田的面积为()A、7.5平方千米B、15平方千米C、75平方千米D、750平方千米∵5,12,13为勾股数∴这是一个直角三角形,直角边的长分别为:5里=2500米=2.5千米;12里=6000米=6千米。∴面积=2.5×6÷2=7.5平方千米正确答案选A12、若对于任意非零实数a,抛物线22yaxaxa总不经过点200(3,16)Pxx,则符合条件的点PA、有且只有1个B、有且只有2个C、至少有3个D、有无穷多个∵22yaxaxa∴(2)(1)yaxa∵总不经过点200(3,16)Pxx∴200016(32)(31)xaxx一定成立。∴0000(4)(4)(1)(4)xxaxx一定成立。∴0=4x时,一定不成立;当0=1x、04x时一定成立。∴当000144xxx、、时,0041xax不一定成立。故只有两个点:0=1x、04x答案选择B二、填空题(本大题6个小题,每小题3分,共18分)13、化简111mmm=1同分母分式的加减法,以及要注意到最后的约分。14、某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成如下扇形统计图,则“世界之窗”对应的扇形圆心角为90度。找到“世界之窗”所占的百分比×360°15、在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点'A的坐标为(1,1)坐标平移的横坐标与纵坐标的变换规律:横坐标左减右加;纵坐标上加下减16、掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1到6的点数,掷得面朝上的点数为偶数的的概率为12列举法求概率。17、已知关于x的方程230xxa有一个根为1,则方程的另一个根为2两种方法,方法一:直接代入,求出a,再求两根。方法二:利用根与系数的关系。213x18、如图,点A、B、D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=度。三、解答题(本大题共8个小题,19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26题每小题10分,共计66分,解答应写出必要的文字说明、证明过程或演算步骤)19、计算:201800(1)8(3)4cos451221220解:原式20、先化简,再求值:2()()4abbabab,其中12,2ab。222224aabbabbabaab解:原式2112,22223ab当时,原式21、为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如下条形统计图(得分为整数,满分为10分,最低分6分)。请根据图吉信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问活动,得10分者设为“一等奖”,请你根据调查活动,帮社区工作人员估计需准备多少份“一等奖”奖品?解:(1)4+10+15+11+10=50(2)众数为地:8,中位数为11,(467101581191010)508.26x(3)1050010050份41015111010987615105人数得分/分DCAB22、为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建。如图,A,B两地之间有一座山,汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=50千米,∠A=45°,∠B=30°。(结果精确到0.1千米,参考数据:21.41,31.73)(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米。解:过C作CD⊥AB于点D∵Rt△BCD中,∠CDB=90°∴sin,cosCDBDBBCBCB∴13,250250CDBD∴25,253CDBD∵Rt△ACD中,∠ACD=90°∴sin,tanCDCDAAACAD∴225,12ADACCD252,25ACAD(1)∴2525085.3ACBC25+25368.3ABADBD(2)85.368.317ACBCAB23、随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动对干部份品牌的粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元,打折后,买50盒甲品牌的粽子和40盒乙品牌的粽子需5200元(1)打折前甲、乙两品牌粽子每盒分别多少元?(2)阳光敬才院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?解:设打折前甲粽子x元每盒,打折前乙粽子y元每盒,依题意得:63660500.8400.755200xyxy解之得:7080xy13600-10480=3120答略(2)80×70+100×80=13600CABPQECDABMNQCDABPDAB80×70×0.8+100×80×0.75=1048024、如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3(1)求CE的长(2)求证△ABC是等腰三角形(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离。解:(1)∵AD是中线,AD∥CE∴AD是△BCE的中位线∴CE=2AD=6(2)∵AD是△BCE的中位线∴AB=AE∵AD∥CE∴∠E=∠BAD,∠DAC=∠ACE∵∠BAD=∠DAC∴∠E=∠ACE∴AC=AE∵AB=AE∴AB=AC∴△ABC是等腰三角形∵AD是△ABC的中线,AB=AC∴BD=4,∠ADB=90°∴AB=5∴AC=AB=5(3)这问主要考点,内切圆圆心与外接圆圆心在什么位置上。(等腰△ABC,故BC的垂直平分线与∠BAC的平分线重合中)故内切圆的圆心Q在AD上,外接圆的圆心在射线AD上。内、外接圆的半径与什么有关,怎么求?内切圆的半径与等面积法来求。作出两个圆(考试时可以不作出圆)及外接圆心P和内切圆圆心Q先求内切圆半径DQ222283585222243SABCSABQSBCQSACQBCADABDQBCDQACDQDQDQDQDQ再求,外接圆半径设AP=BP=x0222222,90,34(3)256RtBDPBDPDPAPADxBPDPBDxxx∴PD=PA-AD=2536=76ECDABxyDCBAOQPM∴PQ=PD+DQ=7463=5225.如图,在平面直角坐标系xOy中,函数myx(m为常数,1,0mx)的图象经过点(,1)Pm和(1,)Qm,直线PQ与x轴,y轴分别交于点C,D两点,(,)Mxy该图象上一动点,过点M分别作x轴和y轴的垂线,垂足分别为A、B。(1)求∠OCD的度数;(2)当3,13mx时,存在点M使得△OPM∽△OCP,求此时点M的坐标;(3)当5m时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请你说明理由。解:(1)∵(,1)Pm和(1,)Qm设PQykxb∴1mkbkbm∴11mbm∴1yxm∴1,1CDxmym∴1,1OCmODm∴∠OCD=45°(2)∵3m∴(3,1)P,(1,3)Q,(4,0)C∴2,4,10PCOCOP不妨设3(,)Mtt,则229OMtt∵△OPM∽△OCP∴OPOMOCOP∴2OPOMOC∴52OM∴22952OMtt∴229254tt∴123,22tt∵当132t时,3(,2)2M∴132PM∴△OPM三边长分别为:135,,1022PMOMOP△OCP三边长分别为2,10,4PCOPOC∴对应边不成比例。xyNEABDCOQPMxyENABDCOQPMxyENABDCOQPM∴32t∵当22t时,3(2,)2M故不能找到这样的点M。52PM∴△OPM三边长分别为:55,,1022PMOMOP△OCP三边长分别为2,10,4PCOPOC∴三边对应成比例∴△OPM∽△OCP∴2t∴3(2,)2M(3)∵5m∴(5,1)P,(1,5)Q∴1,55OPOQyxyx①当01Mx时,如下图重合的面积=2.54.1EONAONAOQSSS②当5Mx时,如下图重合的面积
本文标题:2018年长沙市中考数学试题-详细解答
链接地址:https://www.777doc.com/doc-4586110 .html