您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高考圆锥曲线难题集粹
高考复习讲义-1-高考数学圆锥曲线训练1.已知ABC△的顶点AB,在椭圆2234xy上,C在直线2lyx:上,且ABl∥.(Ⅰ)当AB边通过坐标原点O时,求AB的长及ABC△的面积;(Ⅱ)当90ABC,且斜边AC的长最大时,求AB所在直线的方程.解:(Ⅰ)因为ABl∥,且AB边通过点(00),,所以AB所在直线的方程为yx.设AB,两点坐标分别为1122()()xyxy,,,.由2234xyyx,得1x.所以12222ABxx.又因为AB边上的高h等于原点到直线l的距离.所以2h,122ABCSABh△.(Ⅱ)设AB所在直线的方程为yxm,由2234xyyxm,得2246340xmxm.因为AB,在椭圆上,所以212640m.设AB,两点坐标分别为1122()()xyxy,,,,则1232mxx,212344mxx,所以21232622mABxx.又因为BC的长等于点(0)m,到直线l的距离,即22mBC.所以22222210(1)11ACABBCmmm.所以当1m时,AC边最长,(这时12640)此时AB所在直线的方程为1yx.2.如图,椭圆C:22221(0)xyabab的一个焦点为F(1,0),且过点(20),.(Ⅰ)求椭圆C的方程;(Ⅱ)若AB为垂直于x轴的动弦,直线l:4x与x轴交于点N,直线AF与BN交于点M.(ⅰ)求证:点M恒在椭圆C上;(ⅱ)求AMN△面积的最大值.yxABMFNlO高考复习讲义-2-(Ⅰ)由题设2a,1c,从而2223bac.所以椭圆C的方程为22143xy.(Ⅱ)(ⅰ)由题意得(10)F,,(40)N,,设()Amn,,则()(0)Bmnn,,22143mn.……①AF与BN的方程分别为:(1)(1)0nxmy,(4)(4)0nxmy.设00()Mxy,,则有0000(1)(1)0(4)(4)0nxmynxmy,②,③由②,③得05825mxm,0325nym.由于22220022(58)3434(25)(25)xymnmm2222(58)34(25)(25)mnmm222(58)124(25)mnm222(58)3694(25)mmm1.所以点M恒在椭圆C上.(ⅱ)设AM的方程为1xty,代入22143xy得22(34)690tyty.设11()Axy,,22()Mxy,,则有:122634tyyt,122934yyt.2212121224333()434tyyyyyyt.令234(4)t≥,则221243111111434324yy,因为4≥,1104≤,所以当114,即4,0t时,12yy有最大值3,此时AM过点F.AMN△的面积12121322AMNSFNyyyy△有最大值92.yxABMFNOyxABMFNO高考复习讲义-3-3.设椭圆中心在坐标原点,A(2,0)、B(0,1)是它的两个顶点,直线y=kx(k0)与AB相交于点D,与椭圆相交于E、F两点.(Ⅰ)若ED=6DF,求k的值;Ⅱ)求四边形AEBF面积的最大值。22.(Ⅰ)解:依题设得椭圆的方程为2214xy,直线ABEF,的方程分别为22xy,(0)ykxk.·················································2分如图,设001122()()()DxkxExkxFxkx,,,,,,其中12xx,且12xx,满足方程22(14)4kx,故212214xxk.①由6EDDF知01206()xxxx,得021221510(6)77714xxxxk;由D在AB上知0022xkx,得0212xk.所以221012714kk,化简得2242560kk,解得23k或38k.·················································································································6分(Ⅱ)解法一:根据点到直线的距离公式和①式知,点EF,到AB的距离分别为21112222(1214)55(14)xkxkkhk,22222222(1214)55(14)xkxkkhk.········································································9分又2215AB,所以四边形AEBF的面积为121()2SABhh214(12)525(14)kk22(12)14kk22144214kkk22≤当21k,即当12k时,上式取等号.所以S的最大值为22.·································12分解法二:由题设,1BO,2AO.设11ykx,22ykx,由①得20x,210yy,DFByxAOE高考复习讲义-4-故四边形AEBF的面积为BEFAEFSSS△△222xy··································································································9分222(2)xy22222244xyxy22222(4)xy≤22当222xy时,上式取等号.所以S的最大值为22.····················································12分4.已知曲线11(0)xyCabab:所围成的封闭图形的面积为45,曲线1C的内切圆半径为253.记2C为以曲线1C与坐标轴的交点为顶点的椭圆.(Ⅰ)求椭圆2C的标准方程;(Ⅱ)设AB是过椭圆2C中心的任意弦,l是线段AB的垂直平分线.M是l上异于椭圆中心的点.(1)若MOOA(O为坐标原点),当点A在椭圆2C上运动时,求点M的轨迹方程;(2)若M是l与椭圆2C的交点,求AMB△的面积的最小值.22.解:(Ⅰ)由题意得22245253ababab,.又0ab,解得25a,24b.因此所求椭圆的标准方程为22154xy.(Ⅱ)(1)假设AB所在的直线斜率存在且不为零,设AB所在直线方程为(0)ykxk,()AAAxy,.解方程组22154xyykx,,得222045Axk,2222045Akyk,所以22222222202020(1)454545AAkkOAxykkk.设()Mxy,,由题意知(0)MOOA,所以222MOOA,即2222220(1)45kxyk,因为l是AB的垂直平分线,高考复习讲义-5-所以直线l的方程为1yxk,即xky,因此22222222222220120()4545xyxyxyxyxy,又220xy,所以2225420xy,故22245xy.又当0k或不存在时,上式仍然成立.综上所述,M的轨迹方程为222(0)45xy.(2)当k存在且0k时,由(1)得222045Axk,2222045Akyk,由221541xyyxk,,解得2222054Mkxk,222054Myk,所以2222220(1)45AAkOAxyk,222280(1)445kABOAk,22220(1)54kOMk.解法一:由于22214AMBSABOM△2222180(1)20(1)44554kkkk2222400(1)(45)(54)kkk22222400(1)45542kkk≥222221600(1)4081(1)9kk,当且仅当224554kk时等号成立,即1k时等号成立,此时AMB△面积的最小值是409AMBS△.当0k,1402522529AMBS△.当k不存在时,140542529AMBS△.高考复习讲义-6-综上所述,AMB△的面积的最小值为409.解法二:因为222222111120(1)20(1)4554kkOAOMkk2224554920(1)20kkk,又22112OAOMOAOM≥,409OAOM≥,当且仅当224554kk时等号成立,即1k时等号成立,此时AMB△面积的最小值是409AMBS△.当0k,1402522529AMBS△.当k不存在时,140542529AMBS△.综上所述,AMB△的面积的最小值为409.5.已知抛物线C:22yx,直线2ykx交C于AB,两点,M是线段AB的中点,过M作x轴的垂线交C于点N.(Ⅰ)证明:抛物线C在点N处的切线与AB平行;(Ⅱ)是否存在实数k使0NANB,若存在,求k的值;若不存在,说明理由.解法一:(Ⅰ)如图,设211(2)Axx,,222(2)Bxx,,把2ykx代入22yx得2220xkx,由韦达定理得122kxx,121xx,1224NMxxkxx,N点的坐标为248kk,.设抛物线在点N处的切线l的方程为284kkymx,将22yx代入上式得222048mkkxmx,直线l与抛物线C相切,2222282()048mkkmmmkkmk,mk.即lAB∥.(Ⅱ)假设存在实数k,使0NANB,则NANB,又M是AB的中点,1||||2MNAB.由(Ⅰ)知121212111()(22)[()4]222MyyykxkxkxxxAy112MNBO高考复习讲义-7-22142224kk.MNx轴,22216||||2488MNkkkMNyy.又222121212||1||1()4ABkxxkxxxx2222114(1)11622kkkk.22216111684kkk,解得2k.即存在2k,使0NANB.解法二:(Ⅰ)如图,设221122(2)(2)AxxBxx,,,,把2ykx代入22yx得2220xkx.由韦达定理得121212kxxxx,.1224NMxxkxx,N点的坐标为248kk,.22yx,4yx,抛物线在点N处的切线l的斜率为44kk,lAB∥.(Ⅱ)假设存在实数k,使0NANB.由(Ⅰ)知22221122224848kkkkNAxxNBxx,,,,则22221212224488kkkkNANBxxxx222212124441616kkkkxxxx1212144444kkkkxxxx221212121214()4164kkkxxxxxxkxx22114(1)421624kkkkkk
本文标题:高考圆锥曲线难题集粹
链接地址:https://www.777doc.com/doc-4594250 .html