您好,欢迎访问三七文档
1常用公式第一章判断周期信号方法两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。2/2/2/(2/),/NNMMN仅当为整数时正弦序列才具有周期当为有理数时正弦序列仍具有周期性,其周期为取使为整数的最小整数当2为无理数时正弦序列不具有周期性,1、连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。2、两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。信号的能量def2()Eftdt信号的平均功率def2/2/21lim()TTTPftdtT冲激函数的特性'''()()(0)()(0)()fttftft()()(0)()fttft()()()()fttafata()()(0),fttdtf()()()fttadtfa()()11()()nnnattaa001()()tatttaa000()()()()fkkkfkkk()()()()(1)(0)nnntftdtf-''()()(0)tftdtf-动态系统是线性系统的条件可分解性()()()0,()(0),0fxyyyTfTx零状态线性12120,()()0,()0,()TaftbftaTfbTf零输入线性1212(0)(0),0(0),0(0),0TaxbxaTxbTx判断系统时不变、因果、稳定的方法。线性时不变的微分和积分特性。第二章2微分方程的经典解:()()()()()()hpytytyt完全解齐次解特解齐次解()(1)(1)110()()...()()0nnnytaytaytayt=特解的函数形式与激励函数的形式有关。初始状态和初始值。零输入和零状态响应()()()xfytytyt()()()()()()(0)(0)(0)(0)(0)(0)jjjjjjxfxfyyyyyy()()()(0)(0)(0)jjjxxyyy()(0)0jfy冲激响应()[{0},()]htTt卷积1212()()()()ftftfftd1221()()()()ftftftft1231213()[()()]()()()()ftftftftftftft123123[()()]()()[()()]ftftftftftft卷积积分特性1.()()()()()ftttftft2.()'()'()fttft()()()()()nnfttft()3.()(()())tftdfdftt--=卷积微分特性121221()()1.[()()]()()nnnnnndftdftdftftftftdtdtdt1212122.()()[()]()()[()]tttffdfdftftfd---(1)(1)1212123.()0()0()()'()()ffftftftft在或时,卷积的时移性质1212121212121212()()()()()()()()()()ftftftftftttttttftftftftfttt若,则3第四章周期信号f(t)的傅立叶级数011()cos()sin()2nnnnaftantbnt/2/22()cos()TnTaftntdtT/2/22()sin()TnTbftntdtTan是n的偶函数,bn是n的奇函数01()cos()2nnnAftAnt00Aa22nnnAabarctannnnbannAnn是的偶函数,是的奇函数cossin,1,2,...nnnnnnaAbAn=波形的对称性与谐波特性1.f(t)为偶函数--对称纵坐标:bn=0,展开为余弦级数。2.f(t)为奇函数--对称原点:an=0,展开为正弦级数。3.f(t)为奇谐函数()(/2)ftftT:a0=a2=…=b2=b4=…=04.f(t)为偶谐函数()(/2)ftftT:a1=a3=…=b1=b3=…=0傅立叶级数的指数形式1()2njjntnnftAee000000jjtAAee,12nnjjnnnAeFeF()jntnnftFe/2/21()TjntnTFftedtTF0=A0/2为直流分量周期信号的功率—Parseval等式4222200111()22TnnnnAftdtAFT0,/2nnnFA时幅度为1,脉冲宽度为,周期为T的矩形脉冲频谱:()(),0,1,2,...2nnnFSaSanTTT傅立叶变换()lim()jtnTFjFTftedt1()()2jtftFjed(0)()Fftdt1(0)()2fFjd常用函数的傅里叶变换()(),0tftet1()Fjj(),0tfte222()Fj门函数()gt(()2)SFja()t1'()tj()()nt()nj12()sgn()t2j()t1()j傅立叶变换的性质(见第五章)奇偶性:()()()FjRjX22()()()FjRX()()arctan()XR5(1)()(),()()()(),()()RRXXFjFj(2)()(),()0,()()()(),()0,()()ftftXFjRftftRFjjX若则若则周期信号的傅立叶变换2()()()()TnntnnT普通周期信号的傅立叶变换:00()()()()()nFjFjFjnn无失真传输:y(t)=Kf(t-td)()()djtYjKeFj实现无失真传输,对系统的要求:()()dhtKtt()()/()djtHjYjFKje取样定理取样信号fs(t)的频谱为:()(1/2)()()sFjFjSj冲激取样:()()()()()ssTssssnnstttnTn()(1/1()()2))(ssnsssFjTFFnjj第五章双边拉普拉斯变换对()()stbFsftedt1()()2jstbjftFsedsj收敛域因果信号:Res6反因果信号:Res双边信号:Res收敛域的确定方法:lim()0ttfte单边拉氏变换0()()defstFsftedt1()()()2defjstjftFsedstj常见函数的拉氏变换(单边)()t1,()t1/,0s0ste001,Resss0cost220ss0sint0220s()Tft周期信号01()1TstTsTftedte()Tt1/(1)sTe()ntt1!nns()atet1sa()nattet1!()nnsa()()ntns7单边拉氏变换与傅立叶变换的关系拉普拉斯变换性质(与傅立叶变换性质对比):性质傅立叶变换拉氏变换线性性质1212[()()][()()]aftbftaFjbFj1122112212()()()()Remax(,)aftaftaFsaFss时移性质00()()jtftteFj00))(),ResteFss00f(t-t(t-t0001()()()tsasfattatteFaa对称性质()2()Fjtf频移性质00()[()]jteftFj0()(),ReastaafteFsss尺度变换1()()fatFjaa01()()ResfatFsaaa时域卷积1212()()()()ftftFjFj1212()()()()ftftFsFs收敛域为F1(S)和F2(S)的公共部分频域卷积12121()()()()2ftftFjFj12121()()()()2cjcjftftFFsdj时域微分()()()()nnftjFj021()1()0()'()()(0)Re''()()(0)'(0)()()(0)(),()()nnnnmmmnnftsFsfsftsFssffftsFssfftftsFs若为因果信号则8初值定理和终值定理0(0)lim()lim()tsfftsFs0()lim()sfsFs性质傅立叶变换拉氏变换时域积分()()(0)()tFjfxdxFj0)0)()((FftdjtF0(1)11(1)01()()()()()(0)ReRe0ntntfxdxFssftfxdxsFssfss与重叠部分11()1()[()()'()()]()ftFjfftFfjj若则()()()()()((()/0))nnnnftFjFftFjfjjf若,且则若f(t)为因果信号,已知()()()nnftFs则()()/nnftFss频域微分()()()()nnjtftFj0()()()()()()RennndFstftdsdFstftsds频域积分1(0)()21(0)()()()ftftFjxdfxjFtjd0()()ResftFdst帕斯瓦尔221()()2EftdtFjd9拉普拉斯逆变换:部分分式展开法(1)F(s)为单极点(单根)1212()()......()ininBsKKKKFsAsspspspsp()()iiispKspFs11()iptiLetsp1,2()()Fspj特例:包含时共轭复根1121()()jsjKsjFsKeAjBKK11121()()()()()jjKeKeKKFssjsjsjsj11()2cos()()tftKett或1()2cos()sin()()tfteAtBtt(2)F(s)有重极点(重根)1111111211111()(),(/)()()1()()(1)!rrspsprrrsprkspFskddsspFsdkspFsrds11111!11()()()!ptnnnnnLttLtetsspn复频域分析微分方程的变换解11()0000()(0)()nnimiippjiijiipjasYsasybsFs
本文标题:信号与系统常用公式
链接地址:https://www.777doc.com/doc-4603416 .html