您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 立体几何中平行与垂直的证明3
垂直与平行的问题例1两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求证新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆MN∥平面BCE新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆证法一新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆作MP⊥BC,NQ⊥BE,P、Q为垂足,则MP∥AB,NQ∥AB新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆∴MP∥NQ,又AM=NF,AC=BF,∴MC=NB,∠MCP=∠NBQ=45°∴Rt△MCP≌Rt△NBQ∴MP=NQ,故四边形MPQN为平行四边形∴MN∥PQ∵PQ平面BCE,MN在平面BCE外,∴MN∥平面BCE新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆证法二新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆如图过M作MH⊥AB于H,则MH∥BC,∴ABAHACAM连结NH,由BF=AC,FN=AM,得ABAHBFFN∴NH//AF//BE由MH//BC,NH//BE得:平面MNH//平面BCE∴MN∥平面BCE新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆例2在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆(1)若D是BC的中点,求证新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆截面MBC1⊥侧面BB1C1C;(3)AM=MA1是截面MBC1⊥平面BB1C1C的充要条件吗?请你叙述判断理由新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆(1)证明新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆∵AB=AC,D是BC的中点,∴AD⊥BC∵底面ABC⊥平面BB1C1C,∴AD⊥侧面BB1C1C∴AD⊥CC1新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆(2)证明新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆延长B1A1与BM交于N,连结C1N∵AM=MA1,∴NA1=A1B1∵A1B1=A1C1,∴A1C1=A1N=A1B1∴C1N⊥C1B1∵底面NB1C1⊥侧面BB1C1C,∴C1N⊥侧面BB1C1C∴截面C1NB⊥侧面BB1C1C∴截面MBC1⊥侧面BB1C1C新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆(3)解新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆结论是肯定的,充分性已由(2)证明,下面证必要性新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆过M作ME⊥BC1于E,∵截面MBC1⊥侧面BB1C1C∴ME⊥侧面BB1C1C,又∵AD⊥侧面BB1C1C新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆∴ME∥AD,∴M、E、D、A共面∵AM∥侧面BB1C1C,∴AM∥DE∵CC1⊥AM,∴DE∥CC1∵D是BC的中点,∴E是BC1的中点∴AM=DE=21211CCAA1,∴AM=MA1新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆例3已知斜三棱柱ABC—A1B1C1中,A1C1=B1C1=2,D、D1分别是AB、A1B1的中点,平面A1ABB1⊥平面A1B1C1,异面直线AB1和C1B互相垂直新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆(1)求证新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆AB1⊥C1D1;(2)求证新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆AB1⊥面A1CD;(3)若AB1=3,求直线AC与平面A1CD所成的角新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆(1)证明新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆∵A1C1=B1C1,D1是A1B1的中点,∴C1D1⊥A1B1于D1,又∵平面A1ABB1⊥平面A1B1C1,∴C1D1⊥平面A1B1BA,而AB1平面A1ABB1,∴AB1⊥C1D1新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆(2)证明新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆连结D1D,∵D是AB中点,∴DD1CC1,∴C1D1∥CD,由(1)得CD⊥AB1,又∵C1D1⊥平面A1ABB1,C1B⊥AB1,由三垂线定理得BD1⊥AB1,又∵A1D∥D1B,∴AB1⊥A1D而CD∩A1D=D,∴AB1⊥平面A1CD新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆(3)解新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆由(2)AB1⊥平面A1CD于O,连结CO1得∠ACO为直线AC与平面A1CD所成的角,∵AB1=3,AC=A1C1=2,∴AO=1,∴sinOCA=21ACAO,QPMNFEDCBAHMNFEDCBAC1B1ABCDEMA1D1C1B1ABCDA1∴∠OCA=6新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆学生巩固练习新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆1新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆在长方体ABCD—A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是()A新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆38B新疆源头学子小屋特级教师王新敞
本文标题:立体几何中平行与垂直的证明3
链接地址:https://www.777doc.com/doc-4605185 .html