您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 计量经济学上机实验报告一
《计量经济学》上机实验报告一题目:练习题2.1、2.2,2.4实验日期和时间:2016年9月13日班级:14金工2班学号:20144386姓名:刘必健实验室:东实验楼103实验环境:WindowsXP;EViews3.1实验目的:1.熟悉和了解并运用回归分析和相关分析2.运用最小二乘法3.对模型进行检验4.运用模型进行相关预测实验内容:2.3(1)建立回归模型各国人均寿命与人均GDP:y=c+βx1各国人均寿命与成人识字率:y=c+βx2各国人均寿命与一岁儿童疫苗接种率:y=c+βx3实验步骤:2.3①首先分析人均寿命与人均GDP的数量关系(1)在命令窗口输入LSYCX1,得到如下结果:DependentVariable:YMethod:LeastSquaresDate:12/28/16Time:19:50Sample:122Includedobservations:22VariableCoefficientStd.Errort-StatisticProb.C56.47941.96082028.889920.0000X10.1283600.0272424.7118340.0001R-squared0.526082Meandependentvar62.50000AdjustedR-squared0.502386S.D.dependentvar10.08889S.E.ofregression7.116881Akaikeinfocriterion6.849324Sumsquaredresid1013.000Schwarzcriterion6.948510Loglikelihood-73.34257F-statistic22.20138Durbin-Watsonstat0.629074Prob(F-statistic)0.000134(2)拟合的方程为:1128360.064794.56xy②关于人均寿命与成人识字率的关系(1)在命令窗口输入LSYCX2,得到如下结果:DependentVariable:YMethod:LeastSquaresDate:12/28/16Time:19:59Sample:122Includedobservations:22VariableCoefficientStd.Errort-SatisticProb.C38.794243.53207910.983400.0000X20.3319710.0466567.1153080.0000R-squared0.716825Meandependentvar62.50000AdjustedR-squared0.702666S.D.dependentvar10.08889S.E.ofregression5.501306Akaikeinfocriterion6.334356Sumsquaredresid605.2873Schwarzcriterion6.433542Loglikelihood-67.67792F-statistic50.62761Durbin-Watsonstat1.846406Prob(F-statistic)0.000001(2)拟合的方程为:2331971.079424.38xy③关于人均寿命与一岁儿童疫苗接种率的关系(1)在命令窗口输入LSYCX3,得到如下结果:DependentVariable:YMethod:LeastSquaresDate:12/28/16Time:20:02Sample:122Includedobservations:22VariableCoefficientStd.Errort-StatisticProb.C31.799566.5364344.8649710.0001X30.3872760.0802604.8252850.0001R-squared0.537929Meandependentvar62.50000AdjustedR-squared0.514825S.D.dependentvar10.08889S.E.ofregression7.027364Akaikeinfocriterion6.824009Sumsquaredresid987.6770Schwarzcriterion6.923194Loglikelihood-73.06409F-statistic23.28338Durbin-Watsonstat0.952555Prob(F-statistic)0.000103(2)拟合的方程为:3387276.079956.31xy(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。对于回归系数的t检验:t(β1)=4.711834t0.025(20)=2.086,对斜率系数的显著性检验表明,人均GDP对人均寿命有显著影响。②关于人均寿命与成人识字率模型,由上可知,可决系数为0.716825,说明所建模型整体上对样本数据拟合较好。对于回归系数的t检验:t(β2)=7.115308t0.025(20)=2.086,对斜率系数的显著性检验表明,成人识字率对人均寿命有显著影响。③关于人均寿命与一岁儿童疫苗的模型,由上可知,可决系数为0.537929,说明所建模型整体上对样本数据拟合较好。对于回归系数的t检验:t(β3)=4.825285t0.025(20)=2.086,对斜率系数的显著性检验表明,一岁儿童疫苗接种率对人均寿命有显著影响。对于浙江省预算收入与全省生产总值的模型在命令窗口输入LSYCX,得到如下结果:DependentVariable:YMetho:LeastSquaresDate:12/28/16Time:20:24Sample:19782010Includedobservations:33VariableCoefficientStd.Errort-StatisticProb.C-154.306339.08196-3.9482740.0004X0.1761240.00407243.256390.0000R-squared0.983702Meandependentvar902.5148AdjustedR-squared0.983177S.D.dependentvar1351.009S.E.ofregression175.2325Akaikeinfocriterion13.22880Sumsquaredresid951899.7Schwarzcriterion13.31949Loglikelihood-216.2751F-statistic1871.115Durbin-Watsonstat0.100021Prob(F-statistic)0.000000由上可知,模型的参数:斜率系数0.176124,截距为—154.3063关于浙江省财政预算收入与全省生产总值的模型,检验模型的显著性:1)可决系数为0.983702,说明所建模型整体上对样本数据拟合较好。对于回归系数的t检验:t(β2)=43.25639t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。用规范形式写出检验结果如下:Y=0.176124X—154.3063(0.004072)(39.08196)t=(43.25639)(-3.9)R2=0.983702F=1871.115n=33经济意义是:全省生产总值每增加1亿元,财政预算总收入增加0.176124亿元。(2)当x=32000时,①进行点预测,由上可知Y=0.176124X—154.3063,代入可得:Y=Y=0.176124*32000—154.3063=5481.6617②进行区间预测:先由Eviews分析:由上表可知,∑x2=∑(Xi—X)2=δ2x(n—1)=7608.0212x(33—1)=1852223.473(Xf—X)2=(32000—6000.441)2=675977068.2当Xf=32000时,将相关数据代入计算得到:5481.6617—2.0395x175.2325x√1/331852223.473/675977068.2≤Yf≤5481.66172.0395x175.2325x√1/331852223.473/675977068.2即Yf的置信区间为(5481.6617-64.9649,5481.6617+64.9649)(3)对于浙江省预算收入对数与全省生产总值对数的模型在命令窗口输入LSYCX,得到如下结果:DependentVariable:LNYMethod:LeastSquaresDate:12/28/16Time:22:06Sample(adjusted):13781410Includedobservations:33afteradjustingendpointsVariableCoefficientStd.Errort-StatisticProb.C-1.9182890.268213-7.1521210.0000LNX0.9802750.03429628.582680.0000R-squared0.963442Meandependentvar5.573120AdjustedR-squared0.962263S.D.dependentvar1.684189S.E.ofregression0.327172Akaikeinfocriterion0.662028Sumsquaredresid3.318281Schwarzcriterion0.752726Loglikelihood-8.923468F-statistic816.9699Durbin-Watsonstat0.096208Prob(F-statistic)0.000000①模型方程为:lnY=0.980275lnX-1.918289②由上可知,模型的参数:斜率系数为0.980275,截距为-1.918289③关于浙江省财政预算收入与全省生产总值的模型,检验其显著性:1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好。2)对于回归系数的t检验:t(β2)=28.58268t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。④经济意义:全省生产总值每增长1%,财政预算总收入增长0.980275%(1)对建筑面积与建造单位成本模型在命令窗口输入LSYCX1,得到如下结果:DependentVariable:YMethod:LeastSquaresDate:12/28/16Time:22:18Sample:112Includedobservations:12VariableCoefficientStd.Errort-StatisticProb.C1845.47519.2644695.796880.0000X-64.184004.809828-13.344340.0000R-squared0.946829Meandependentvar1619.333AdjustedR-squared0.941512S.D.dependentvar131.2252S.E.ofregression31.73600Akaikeinfocriterion9.903792Sumsquaredresid10071.74Schwarzcriterion9.984610Loglikelihood-57.42275F-statistic178.0715Durbin-Watsonstat1.172407Prob(F-statistic)0.000000由上可得:建筑面积与建造成本的回归方程为:Y=1845.475-64.18400X经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。首先进行点预测,由Y=1845.475--64.18400X得,当x=4.5,y=1556.647再进行区间估计:由上表
本文标题:计量经济学上机实验报告一
链接地址:https://www.777doc.com/doc-4607613 .html